n – число членов ряда;
t – время.
Решение системы уравнений позволяет получить выражения для параметров а0 и а1:
год | y | t | t2 | yt | yt |
1999 | 9312 | -5 | 25 | -46560 | 9676,9 |
2000 | 9433 | -4 | 16 | -37732 | 9832,5 |
2001 | 9995 | -3 | 9 | -29985 | 9988,1 |
2002 | 10468 | -2 | 4 | -20936 | 10143,7 |
2003 | 11097 | -1 | 1 | -11097 | 10299,3 |
2004 | 11020 | 1 | 1 | 11020 | 10610,5 |
2005 | 10659 | 2 | 4 | 21318 | 10766,1 |
2006 | 10391 | 3 | 9 | 31173 | 10921,7 |
2007 | 10956 | 4 | 16 | 43824 | 11077,3 |
2008 | 11218 | 5 | 25 | 56090 | 11232,9 |
ИТОГО | 104549 | 0 | 110 | 17115 | 104549 |
По итоговым данным определим параметры уравнения:
a0=104549/10=10454,9
a1=17115/110=155,6
В результате получаем следующее уравнение общей тенденции ряда динамики:
Уt=10454,9+155,6t.
1999 уt=10454,9 +155,6(-5)=9676,9;
2000 yt=10454,9 +155,6(-4)=9832,5 и т.д.
Для проверки расчёта значений уt используется формула
(18)В нашем примере эти два значения равны, значит значения определены верно.
При прогнозировании рождаемости с помощью метода экстраполяции выделяют следующие методы:
• на основе среднего абсолютного прироста Δ ,
• на основе среднего коэффициента роста K ,
• на основе аналитического выравнивания ряда.
Метод прогнозирования на основе среднего абсолютного приростаΔ применяется в том случае, если уровни изменяются равномерно (линейно).
Прогнозируемое значение уровня определяется по формуле:
, (19)где
- период экстраполяции, – обобщающего показателя скорости изменения уровней во времени (20)Прогнозирование по среднему коэффициенту ростаK применяется, если общая тенденция характеризуется экспотенциальной кривой. В этом случае экстраполируемый уровень определяется по формуле:
yt = y0 х (K)t-1 (21)
Прогнозирование на основе аналитического выравниванияявляется наиболее распространенным методом прогнозирования. Для получения прогноза используется аналитическое выражение тренда. Чтобы получить прогноз, достаточно в модели продолжить значение условного показателя времени Уt=10454,9+155,6t..
Полученные результаты экстраполяции показаны в таблице
Таблица 4 - Годовые прогнозные значения рождаемости в Амурской области
Год | Прогноз на основе | |||
Среднего абсолютного прироста | Среднего темпа роста | Аналитического выравнивания | ||
t | yt | |||
2009 | 11429,78 | 11452 | 6 | 11388 |
2010 | 11641,56 | 11691 | 7 | 11548 |
2011 | 11853,34 | 11935 | 8 | 11699 |
2012 | 12065,12 | 12184 | 9 | 11855 |
2.2 Анализ структуры рождаемости в Амурской области
Типологическая группировка – разделение качественно разнородной совокупности на классы, социально-экономические типы, однородные группы единиц в соответствии с правилами научной группировки. Сгруппируем родившихся в соответствии с их полом.
Таблица 5 – Группировка родившихся по полу
1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | |
женщины | 4530 | 4584 | 4791 | 4939 | 5471 | 5378 | 5098 | 5009 | 5330 | 5529 |
мужчины | 4782 | 4849 | 5204 | 5529 | 5626 | 5642 | 5561 | 5382 | 5626 | 5689 |
оба пола | 9312 | 9433 | 9995 | 10468 | 11097 | 11020 | 10659 | 10391 | 10956 | 11218 |
Рисунок 1 – График отражающий группировку родившихся по полу
Из представленных данных можно сделать вывод. Что за период с 1999 по 2008 годы рождаемость мальчиков превышала над рождаемостью девочек.
Структурная группировка – группировка, в которой происходит разделение однородной совокупности на группы, характеризующие её структуру по какому-либо варьирующему признаку.
Проведем группировку, разделив женщин детородного возраста на возрастные группы. Здесь в качестве группировочного признака будет выступать возраст женщины. Выделим 7 групп женщин детородного возраста. Найдем величину интервала по формуле
, (22)где Хmax - верхняя граница интервала, в данном случае она равна 15 лет
Xmin – нижняя граница интервала, она составляет 50 лет
n = 7
Таким образом, величина интервала равна 5 годам.
Таблица 6 - Число родившихся у женщин конкретной возрастной группы в Амурской области
Год | Возрастная группа, лет | ||||||
15-19 | 20-24 | 25-29 | 30-34 | 35-39 | 40-44 | 45-49 и старше | |
2004 | 1586 | 4287 | 3094 | 1525 | 433 | 85 | 1 |
2005 | 1523 | 4128 | 2927 | 1535 | 445 | 87 | 3 |
2006 | 1470 | 3998 | 2802 | 1562 | 494 | 48 | 4 |
2007 | 1433 | 4058 | 2938 | 1826 | 608 | 85 | 3 |
2008 | 1218 | 3963 | 3303 | 1957 | 668 | 99 | 3 |
Итого | 7230 | 20434 | 15064 | 8405 | 2648 | 404 | 14 |
2.3 Группировка городов и районов Амурской области по показателю рождаемости за 2008 год
При составлении структурных группировок на основе варьирующих количественных признаков необходимо определить количество групп и интервалы группировки.
Интервал - количественное значение, отделяющее одну единицу (группу) от другой, т. е. интервал очерчивает количественные границы групп.
Как правило, величина интервала представляет собой разность между максимальным и минимальным значениями признака в каждой группе.
Вопрос о числе групп и величине интервала следует решать с учетом множества обстоятельств, прежде всего исходя из целей исследования, значения изучаемого признака и т.д.
Количество групп и величина интервала связаны между собой: чем больше образовано групп, тем меньше интервал, и наоборот. Количество групп зависит от числа единиц исследуемого объекта и степени колеблемости группировочного признака. При небольшом объеме совокупности нельзя образовывать большое число групп, так как группы будут малочисленными.
Ориентировочно определить оптимальное количество групп с равными интервалами можно по формуле американского ученого Стерджесса:
n = 1 +3,322 lg N (23)
Подставляя данные примера в эту формулу, находим количество интервалов n =1+ 3,322 lg 28 = 1+3,322*1,4471 = 5,8. Так как количество интервалов не может быть дробным, то его нужно округлить до ближайшего целого числа (по правилам округления). То есть нужно принять 6 интервалов.
В состав Амурской области входит 29 городов и районов
Таблица 7 – Распределение родившихся по городам и районам Амурской области, чел.
Населенный пункт | Количество родившихся |
г.Благовещенск | 2579 |
г.Белогорск | 860 |
г.Зея | 286 |
г.Райчихинск | 293 |
г.Свободный | 776 |
г.Тында | 501 |
г.Шимановск | 268 |
п.г.т. Прогресс | 169 |
Архаринский район | 250 |
Белогорский район | 311 |
Благовещенский район | 223 |
Бурейский район | 401 |
Завитинский район | 266 |
Зейский район | 240 |
Ивановский район | 410 |
Константиновский район | 252 |
Магдагачинский район | 329 |
Мазановский район | 190 |
Михайловский район | 219 |
Октябрьский район | 295 |
Ромненский район | 154 |
Свободненский район | 191 |
Селемджинский район | 125 |
Серышевский район | 445 |
Сковородинский район | 432 |
Тамбовский район | 363 |
Тындинский район | 225 |
Шимановский район | 103 |
Углегорск ЗАТО | 62 |
Так рождаемость в городе Благовещенске (2579) почти в 3 раза превышает рождаемость во втором по данному показателю городе Белогорске (860), то мы выводим данные по Благовещенску за пределы формулы.
Вычислим по формуле интервалы группировки
(24)