- средняя арифметическая взвешенная
- средняя арифметическая простая
где Уi - варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
n- число наблюдение;
fi - частота, показывающая, сколько раз встречается i-e значение осредняемого признака.
Показатели вариации:
- размах вариации:
R=ymax-ymin
где уmax- максимальное значение признака,
у min– минимальное значение признака;
R=13,3-6,3=7,0
- среднее линейное отклонение:
,где у – индивидуальные значения признака,
у – средняя величина,
f– частота;
d=9,86-9,92=0,06
- дисперсия:
;- среднее квадратическое отклонение:
;- коэффициент вариации:
.Коэффициент вариации показывает степень однородности совокупности. Так как V < 33% - совокупность однородна.
- коэффициент осцилляции:
V=7,0/9,92*100%=70,56
- линейный коэффициент вариации:
V=0,06/9,92*100%=0,06%
Задача 2
Разделив первые 30 регионов (см. данные из Задания 1) на 2 группы по величине признака, соответствующего вашему варианту, проверьте правило сложения дисперсий.
По результатам расчетов сделать вывод.
Методика решения
Межгрупповая дисперсия
характеризует систематическую вариацию результативного порядка, обусловленную влиянием признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений групповых (частных) средних , от общей средней : ,где f — численность единиц в группе.
Внутригрупповая (частная) дисперсия
отражает случайную вариацию, т.е. часть вариации, обусловленную влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений отдельных значений признака внутри группы х от средней арифметической этой группы , (групповой средней) и может быть исчислена как простая дисперсия или как взвешенная дисперсия по формулам, соответственно: ; .На основании внутригрупповой дисперсии по каждой группе, т.е. на основании
можно определить среднюю из внутригрупповых дисперсий:Согласно правилу сложения дисперсий: общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий:
Ход расчета дисперсий:
1)определяем значения дисперсий по каждой группе (внутригрупповые дисперсии);
у2=У(y-yi)2f/ Уfу1 2=5024830,6/6=837471,76 у1 2=51/6=8,5
у2 2=4870450,2/2=2435225,1 у2 2=4,62/2=2,31
у3 2=4718478,2/2=2359239,1 у3 2=2,5/2=1,25
у4 2=4568915,2/7=652702,17 у4 2=8,2/5=1,64
у5 2=4421760,8/3=1473920,2 у5 2=35,9/5=7,18
2) среднее значение дисперсии по двум группам;
у12 2=1180222\20=5901,1 у12 2=102,22\20=5,11
3) общую дисперсию по правилу сложения.
у2=5906,211/20=295,31
Для проверки результатов расчета рассчитываем общую дисперсию, без учета деления регионов на группы.
Задача 3
По группе регионов (см. исходные данные Задания №1) необходимо:
1) найти линейное уравнение парной регрессии между результативным (ВРП) и факторным признаком (хi), оценить полученные результаты;
х1 – потребительские расходы;
х2 – государственные расходы
х3 – валовые инвестиции
х4 – экспорт
х5 – средняя заработная плата
2) количественно оценить тесноту связи между результативным признаком и факторами.
3) по исходным данным постройте эмпирическую и теоретическую линии регрессии.
4) проверить адекватность модели на основе критерия Фишера и значимость коэффициентов регрессии на основе критерия Стьюдента.
По результатам расчетов сделать вывод.
Таблица 7Варианты заданий
Номерварианта | Регион | xi | Номерварианта | Регион | xi | Номерварианта | Регион | xi |
1 | с 1 по 20 | Х1 | 11 | с 50 по 69 | Х1 | 21 | с 32 по 51 | Х1 |
2 | с 5 по 24 | Х2 | 12 | с 55 по 74 | Х2 | 22 | с 28 по 47 | Х2 |
3 | с 10 по 29 | Х3 | 13 | с 60 по 79 | Х3 | 23 | с 81 по 100 | Х3 |
4 | с 15 по 34 | Х4 | 14 | с 65 по 84 | Х4 | 24 | с 76 по 95 | Х4 |
5 | с 20 по 39 | Х5 | 15 | с 70 по 89 | Х5 | 25 | с 61 по 80 | Х5 |
6 | с 25 по 44 | Х1 | 16 | с 75 по 94 | Х1 | 26 | с 51 по 70 | Х1 |
7 | с 30 по 49 | Х2 | 17 | с 80 по 99 | Х2 | 27 | с 41 по 60 | Х2 |
8 | с 35 по 54 | Х3 | 18 | с 14 по 33 | Х3 | 28 | с 21 по 40 | Х3 |
9 | с 40 по 59 | Х4 | 19 | с 17 по 36 | Х4 | 29 | с 3 по 22 | Х4 |
10 | с 45 по 64 | Х5 | 20 | с 23 по 42 | Х5 | 30 | с 54 по 73 | Х5 |
РЕШЕНИЕ
Параметры уравнения парной линейной зависимости а и b
могут быть определены методом наименьших квадратов путем решения системы нормальных уравнений:Параметр b - это линейный коэффициент регрессии, характеризующий направление (+b - связь прямая; - b - связь обратная) и силу связи.
Он может быть рассчитан по формуле:
b=60,6 272
b=16483,2 - 332,6/295,31=54,69
Коэффициент регрессии применяют для определения коэффициента эластичности, который показывает, на сколько процентов изменится величина результативного признака у при изменении признака-фактора х на один процент. Для определения коэффициента эластичности используется формула:
Э=54,69*272/60,6=245,47
Подставляя эмпирические значения признака фактора х в уравнение регрессии, определим теоретические значения результативного признака уx. попуществляется по формулеа, а значимость коэффициентов регрессии на основе критерия Стьюдента
Тесноту связи так же необходимо охарактеризовать линейным коэффициентом корреляции.
илиЗадача 4
По предприятию имеются следующие данные о реализованной продукции, определите:
- индивидуальные индексы цены, физического объема и товарооборота;
- агрегатный индекс товарооборота, цен и физического объема (показать их взаимосвязь)
- абсолютное изменение товарооборота за счет изменения ассортимента продукции и цены продажи;
- индекс структурных сдвигов, индексы фиксированного и переменного состава, показать их взаимосвязь.
По результатам расчетов сделать вывод.
Значение N определяется по последней цифре номера зачетной книжки студента. N=3