Метод Ірвіна ґрунтується на порівнянні сусідніх значень ряду та розрахунку характеристики
, яка дорівнює: ; (2.15)де
— оцінка середньоквадратичного відхилення вибіркового ряду , яка розраховується з використанням формул:,
.Розрахункові значення
, тощо порівнюють із критичним значенням , і якщо вони не перевищують критичне, то відповідні рівні вважаються нормальними. Критичні значення для рівня значущості α = 0,05 (помилка 5 %) наведено в табл. 2.3п | 2 | 3 | 10 | 20 | 30 | 50 | 100 |
2,8 | 2,3 | 1,6 | 1,3 | 1,2 | 1,1 | 1,0 |
Критерій Ірвіна не «сприймає» аномальність, якщо вона виявляється в середині ряду зі стрімкою динамікою, тобто коли стрибок великий, але не перевищує рівнів наприкінці періоду спостережень, оскільки величина
характеризує відхилення значень показника від середнього рівня за всією сукупністю спостережень.Модифікація цього методу пов’язана із послідовним розрахунком
не за всією сукупністю, а за трьома спостереженнями. Так, для всіх або лише для підозрюваних в аномальності рівнів розраховують оцінки середнього і середньоквадратичного відхилення для двох сусідніх із ними значень: (2.16) . (2.17)Обчислюють величину
, t = 2, 3,…, n. (2.18)Розраховані ковзні значення
порівнюють із критичними значеннями для .Викривлення тенденції свідчить про зміну закономірності розвитку процесу або про зміну методики обчислення значень показника. Якщо точно встановлено, що причиною аномальності є помилки першого роду, то аномальні спостереженнязамінюють або простою середньою арифметичною двох сусідніх рівнів ряду, або відповідними значеннями за кривою, що згладжує цей часовий ряд. Не перевіряють часові ряди з періодом сезонності, більшим за одиницю, а також кінцеві рівні періоду спостережень.
Якщо значення наприкінці часового ряду «випадає» із загальної тенденції, то без додаткової інформації стосовно причин «випадіння» в кінці ряду неможливо визначити, чи це спостереження аномальне, чи відбувається зміна тенденції. У цьому разі важливо провести якісний аналіз змін, що відбуваються, або дочекатися надходження результатів нового спостереження. Якщо викривлення тенденції пояснюється зміною методики обчислення показника, то рівні, що передують викривленню тенденції, можуть бути використані для оцінювання характеристик динаміки і побудови моделі за умови, що вони будуть обчислені за новою методикою. Якщо таке обчислення неможливе, ці рівні ряду треба виключити з розгляду. Якщо викривлення тенденції відображає зміну закономірності розвитку процесу, то за інформаційну базу для статистичного аналізу можна взяти лише значення, що відповідають останнім змінам.
Стійкість часового ряду відбиває перевагу закономірності над випадковістю у зміні рівнів ряду. На графіках стійких часових рядів унаочнюється закономірність, а на графіках несталих рядів зміни послідовних рівнів постають хаотичними, тож пошук закономірностей формування значень рівнів таких рядів марний.
Достатня сукупність спостережень насамперед характеризує повноту даних. Достатня кількість спостережень визначається залежно від мети дослідження динаміки. Якщо метою є описовий статистичний аналіз, то період дослідження можна обрати будь-який, на власний розсуд. Якщо мета дослідження — побудова прогнозної моделі, тоді для статистичного аналізу, який розглядає незалежні спостереження з однаковим розподілом, кількість рівнів динамічного ряду має бути якомога більшою і, як правило, не менш як утричі має перевищувати період упередження прогнозу й становити більше 7. У разі використання квартальних або місячних даних для дослідження сезонності й прогнозування сезонних процесів часовий ряд має містити квартальні або місячні дані не менш як за чотири роки, навіть якщо складають прогноз на 1—2 квартали (місяці).
У методах нелінійної динаміки підхід до формування достатньої кількості даних відрізняється від прийнятого більшістю статистиків. У стандартній статистичній теорії чим більше даних точок спостережень, тим краще, бо спостереження передбачаються як незалежні. Нелінійні динамічні системи характеризуються процесами із довготривалою пам’яттю. Тому для них охоплення більшого періоду часу є важливішим, ніж збільшення кількості точок спостережень. Наприклад, щоденна вибірка за чотири роки, або 1040 спостережень, не дадуть такого результату, як щомісячні дані за сорок років, або загалом 480 спостережень. Причина полягає в тому, що щоденні дані утворюють лише один чотирирічний цикл, а щомісячні — десять циклів. Нелінійні процеси мають так звану «стрілу часу». Збільшення «частоти» даних часто навіть ускладнює аналіз і не поліпшує значущості результату.
Серед чинників, щовизначають регулярні коливання ряду, розрізняють такі:
Сезонні, щовідповідають коливанням, які мають періодичний або близький до нього характер упродовж одного року. Наприклад, ціни на сільгосппродукцію взимку вищі, ніж улітку ; рівень безробіття в курортних містах у зимовий період зростає відносно до літнього. Сезонні чинники можуть охоплювати причини, пов’язані з діяльністю людини (свята, відпустки, релігійні традиції тощо). Результат дії сезонних чинників моделюють за допомогою функції
.Циклічні (кон’юнктурні)коливання схожі на сезонні, але виявляються на триваліших інтервалах часу. Циклічні коливання пояснюються дією довготермінових циклів економічної, демографічної або астрофізичної природи. Наприклад, за багаторічними спостереженнями активність сонця має циклічність у 10,5—11 років, причому сплески сонячної радіаціївпливають на врожайність зернових культур, репродуктивну властивість тварин тощо. Отже динаміка показника міситиме характерні зміни, що повторюються з однаковою циклічністю. Результат дії циклічних чинників моделюють за допомогою функції
.Тренд, сезонна й циклічна компоненти не є випадковими, тому їх називають систематичнимикомпонентами часового ряду.
Випадковічинники не підлягають вимірюванню, але неминуче супроводжують будь-який економічний процес і визначають стохастичний характер його елементів. До випадкових чинників можна віднести помилки вимірювання, випадкові збурення тощо. Деякі часові ряди, наприклад стаціонарні, не мають тенденції та сезонної складової, кожен наступний рівень їх утворюється як сума середнього рівня ряду і випадкової (додатної або від’ємної) компоненти. Приклад такого ряду демонструє рис. 2.1в.
Результат впливу випадкових чинників позначається випадковою компонентоюεt, яку обчислюють як залишок або похибку, що залишається після вилучення з часового ряду систематичних компонент. Це не означає, що така складова не підлягає подальшому аналізу, оскільки містить лише хаос.