1) число заводов;
2) среднегодовую стоимость основных производственных фондов – всего и в среднем на один завод.
3) стоимость валовой продукции всего и в среднем на один завод;
4) размер валовой продукции на один рубль основных производственных фондов (фондоотдачу).
Результаты представьте в виде групповой таблицы. Напишите краткие выводы.
Задача 2
Имеются следующие данные о численности рабочих в бригадах в двух отраслях народного хозяйства двух областей за отчетный год:
Область | Промышленность | Строительство | ||
Численность рабочих в одной бригаде, чел. | Число бригад, ед. | Численность рабочих в одной бригаде, чел. | Общая численность рабочих всех бригад, чел. | |
А | 15 | 1200 | 19 | 9500 |
Б | 18 | 1500 | 23 | 18400 |
Вычислите среднюю численность рабочих одной бригады:
1)в промышленности;
2)в строительстве.
Укажите, какой вид средней надо применить для вычисления этих показателей. Сравните полученные средние.
Задача 3
В целях изучения дневной выработки рабочими завода проведена десятипроцентная случайная бесповторная выборка, в результате которой получено следующее распределение рабочих:
Группы рабочих с дневной выработкой изделий, шт. | Число рабочих, чел.. |
До 20 20-30 30-40 40-50 свыше 50 | 5 10 40 22 8 |
На основе этих данных вычислите:
1) среднедневную выработку изделий;
2) средний квадрат отклонений (дисперсию) и среднее квадратическое отклонение;
3) коэффициент вариации;
4) с вероятностью 0,954 предельную ошибку выборочной средней, возможные границы, в которых ожидается среднедневная выработка изделий всеми рабочими завода;
5) с вероятностью 0,954 предельную ошибку выборочной доли и границы удельного веса рабочих, с дневной выработкой от 40 до 50 изделий.
Задача 4
Производство продукции предприятия характеризуется следующими данными:
Для анализа данного ряда динамики, вычислите:
1) среднемесячное производство продукции.
2) базисный темп роста с помощью взаимосвязи цепных темпов роста.
3) среднемесячный темп роста и прироста. Результаты представьте в таблице.
Месяцы | Производство продукции, тыс. руб. |
Январь | 1100 |
Февраль | 1200 |
Март | 1300 |
Апрель | 1350 |
Май | 1500 |
Июнь | 1600 |
Изобразите динамику производства продукции на графике. Сделайте выводы.
Задача 5
Имеются следующие данные о товарных запасах непродовольственных товаров
торговой организации, млн. руб.:
На 1 января – 4,5
На 1 апреля – 4,6
На 1 июля – 4,8
На 1 октября – 4,5
На 1 января следующего года – 4,2
Вычислите средние товарные запасы торговой организации:
1) За 1 полугодие;
2) за 2 полугодие;
3) за год.
Поясните, почему методы расчета средних уровней рядов динамики в задачах 4, 5 различны.
Задача 6
Динамика себестоимости и объема производства продукции характеризуется следующими данными:
Вид продукции | Выработано продукции, тыс.ед. | Себестоимость единицы продукции, тыс. руб. | ||
Базисный период | Отчетный период | Базисный период | Отчетный период | |
Завод №1 | ||||
ЛР – 34 | 2,7 | 2,7 | 3,2 | 3,1 |
АВ - 50 | 4,0 | 4,8 | 1,5 | 1,5 |
Завод №2 | ||||
АВ - 50 | 2,0 | 1,2 | 1,4 | 1,3 |
На основании имеющихся данных вычислите:
1. Для завода №1 (по двум видам продукции вместе):
а)общий индекс затрат на производство продукции;
б)общий индекс себестоимости продукции;
в)общий индекс физического объема производства продукции.
Определите в отчетном периоде изменение суммы затрат на производство продукции (за счет изменения себестоимости и объема выработанной продукции).
Покажите взаимосвязь между исчисленными индексами:
2. Для двух заводов вместе (по продукции АВ - 50):
а)индекс себестоимости переменного состава;
б)индекс себестоимости постоянного состава;
в)индекс влияния изменения структуры производства продукции на динамику средней себестоимости.
Объясните разницу между величинами индексов постоянного и переменного состава.
Задача 7
Имеются следующие данные о товарообороте магазина :
Товарная группа | Продано товаров в фактических ценах, тыс. руб. | |
Базисный год | Отчетный год | |
Картофель | 562,5 | 670,9 |
Фрукты и цитрусовые | 348,2 | 451,6 |
В отчетном году по сравнению с базисным годом цены на картофель повысились на 7%, а на фрукты и цитрусовые остались без именения.
Вычислите:
1) общий индекс товарооборота в фактических ценах;
2) общий индекс цен и сумму дополнительных расходов населения вследствие изменения цен в отчетном году при покупке товаров в данном магазине;
3)общий индекс физического объема товарооборота, используя взаимосвязь индексов.
Задача 8
Для изучения тесноты связи между выпуском валовой продукции на один завод (результативный признак - y) и оснащенностью заводов основными производственными фондами (факторный признак - х) по данным задачи 1 вычислите коэффициент детерминации и эмпирическое корреляционное отношение. Поясните их значение.
5. ПРАКТИКУМ ПО ТЕОРИИ СТАТИСТИКИ
1. ГРУППИРОВКА СТАТИСТИЧЕСКИХ ДАННЫХ И ЕЕ РОЛЬ В АНАЛИЗЕ ИНФОРМАЦИИ
Одним из основных наиболее распространенных методов обработки и анализа первичной статистической информации является группировка.
Под группировкой понимают расчленение единиц статистической совокупности на группы, однородные в каком-либо существенном отношении, и характеристику таких групп системой показателей в целях выделения типов явлений, изучения структуры и взаимосвязей. Следовательно, с помощью группировок решаются три задачи:
• разделение всей совокупности на качественно однородные группы - выделение социально-экономических типов. Эти группировку называются типологическими (например, группировки хозяйственных объектов по формам собственности, населения по общественным группам и др.);
• характеристика структуры явления и структурных сдвигов. Эти группировки называются структурными (например, определение значения каждого вида транспорта в транспортном балансе страны, изучение состава населения по полу, возрасту и другим признакам и т. д.);
• изучение взаимосвязей между отдельными признаками изучаемого явления. Такие группировки называются аналитическими (например, группировка предприятий определенной отрасли экономики по уровню производительности труда для выявления ее влияния на себестоимость продукции).
Разграничение трех видов группировки является в известной мере условным. Во многих случаях одна и та же группировка дает возможность решать все три задачи.
Признак, на основе которого производится подразделение единиц наблюдения на группы, называется группировочным признаком или основанием группировки. Группировка может выполняться по одному признаку (простая группировка) и по нескольким признакам (комбинированная группировка).
Группировочные признаки могут быть атрибутивными и количественными. Атрибутивные признаки регистрируются в виде текстовой записи (например, профессия рабочих, социальная группа населения). Количественные признаки имеют цифровое выражение (стаж работы, размер дохода).
При группировке по атрибутивному признаку число групп определяется количеством соответствующих наименований, если число этих наименований не очень велико. Если признак имеет большое количество разновидностей, то при группировке ряд наименований объединяют в одну группу. Для обоснованного объединения их в группы разрабатываются классификации. В отличие от группировок при классификации группировочные признаки установлены заранее на длительный период для решения многих задач, в то время как группировки выполняются для целей конкретного исследования. Примерами могут служить классификации отраслей экономики, автотранспортных предприятий по целевому назначению (грузовые, автобусные, таксомоторные и др.).
При группировке по количественному признаку число групп определяется в зависимости от характера изменения признака и задач исследования. Если количественный признак меняется прерывно (дискретно), т. е. может принимать только некоторые - чаще целые значения (например, тарифный разряд рабочих), то число групп должно соответствовать количеству значений признака.
При непрерывном изменении признак принимает любые значения (например, стаж работы или возраст рабочих), поэтому группы ограничиваются значениями признака в интервале «от - до». Интервалом называется разница между максимальным и минимальным значениями признака в каждой группе. На практике используются три вида интервалов: равные, неравные (постепенно увеличивающиеся) и специализированные.
Равные интервалы используются, если нужно охарактеризовать количественные различия в величине признака внутри групп одинакового качества (например, при группировке рабочих определенной профессии по проценту выполнения норм выработки).
Величина равного интервала исчисляется по формуле: