Смекни!
smekni.com

Теория статистики (стр. 1 из 2)

Задача 1

Среднегодовая численность населения области выглядит следующим образом:

Год Среднегодовая численность населения, тыс.чел.
1992 2528,0
1993 2655,0
1994 2689,0
1995 2722,0
1996 2747,4
1997 2747,7
1998 2750,5
1999 2747,9
2000 2739,0

Рассчитать абсолютные (цепные и базисные) и средние показатели динамики.

Решение

1. Требуемые показатели рассчитываются по формулам:

· Абсолютный прирост:

· Темп роста


· Темп прироста:

Полученные данные представим в таблице:

Год Среднегодовая численность населения, тыс. чел. Абсолютный прирост, млн. руб. Темпы роста, % Темпы прироста, %
к баз. к отч. к баз. к отч. к баз. к отч.
1992 2528,0 0 - 100 - 0 -
1993 2655,0 127 127 105,0 105,0 5 5
1994 2689,0 161 34 106,4 101,3 6,4 1,3
1995 2722,0 194 33 107,7 101,2 7,7 1,2
1996 2747,4 219,4 25,4 108,7 100,9 8,7 0,9
1997 2747,7 219,7 0,3 108,7 100 8,7 0
1998 2750,5 222,5 2,8 108,8 100,1 8,8 0,1
1999 2747,9 219,9 -2,6 108,7 99,9 8,7 -0,1
2000 2739,0 211 -8,9 108,3 99,7 8,3 -0,3

Среднегодовой абсолютный прирост определим по формуле:

тыс. чел.

Среднегодовые темпы роста и прироста:

или 100,97%

=100,97-100 = 0,97%,

то есть ежегодно уровни ряда возрастали в среднем на 0,97%.

Задача 2

По одному из предприятий региона имеются следующие данные об объеме производства макаронных изделий:

Год Объем производства, т.
1990 138,4
1991 155,4
1992 165,4
1993 168,1
1994 173,9
1995 178,1
1996 184,2
1997 189,7
1998 190,5
1999 200,2
2000 209,7

Определить:

1. среднегодовое производство макаронных изделий;

2. базисные, цепные и среднегодовые показатели абсолютного прироста, темпов роста и темпов прироста производства макаронных изделий;

3. проверьте ряд динамики производства макаронных изделий на наличие тренда. Используя метод аналитического выравнивания, постройте уравнение прямой;

4. изобразите динамику производства макаронных изделий на графике.

Решение

1. Данный динамический ряд является интервальным, поэтому для определения среднегодового производства используем формулу арифметической простой:


=
,

то есть в среднем в год производится 177,6 тонн макаронных изделий.

2. Базисные, цепные и среднегодовые показатели абсолютного прироста, темпов роста и темпов прироста производства макаронных изделий рассчитываются по формулам:

· Абсолютный прирост:

· Темп роста:

· Темп прироста:

Полученные данные представим в таблице:

Год Объем производства, т. Абсолютный прирост, млн. руб. Темпы роста, % Темпы прироста, %
к баз. к отч. к баз. к отч. к баз. к отч.
1990 138,4 0 - 100 - 0 -
1991 155,4 17 17 112,28 112,28 12,28 12,28
1992 165,4 27 10 119,51 106,44 19,51 6,44
1993 168,1 29,7 2,7 121,46 101,63 21,46 1,63
1994 173,9 35,5 5,8 125,65 103,45 25,65 3,45
1995 178,1 39,7 4,2 128,68 102,42 28,68 2,42
1996 184,2 45,8 6,1 133,09 103,43 33,09 3,43
1997 189,7 51,3 5,5 137,07 102,99 37,07 2,99
1998 190,5 52,1 0,8 137,64 100,42 37,64 0,42
1999 200,2 61,8 9,7 144,65 105,09 44,65 5,09
2000 209,7 71,3 9,5 151,52 104,75 51,52 4,75

3. Рассчитаем уравнение тренда ряда динамики.

Годы Объем производства, т. t t2 yt
1990 138,4 1 1 138,4 -151,88
1991 155,4 2 4 310,8 -101,63
1992 165,4 3 9 196,2 -51,38
1993 168,1 4 16 672,4 -1,13
1994 173,9 5 25 869,5 49,12
1995 178,1 6 36 1068,6 99,37
1996 184,2 7 49 1289,4 149,62
1997 189,7 8 64 1517,6 199,87
1998 190,5 9 81 1714,5 250,12
1999 200,2 10 100 2002 300,37
2000 209,7 11 121 2306,7 350,62
Итого 1953,6 66 506 12086,1 1093,07

Для выравнивания ряда динамики по прямой следует получить уравнение:

=a0+a1t.

Для расчета параметров а0 и а1 решается система нормальных уравнений:


Решив систему, получаем: a0=-202,13, a1=50,25.

Уравнение тренда примет вид:

=-202,13+50,25t.

Ряд выровненных значений

характеризует тенденцию стабильного увеличения выпуска продукции.

4. Изобразим динамику производства макаронных изделий на графике.

Задача 3

Имеются данные о вводе жилых домов по одной из строительных компаний:

Год Введено общей площади, тыс. кв. м.
1990 33
1991 35
1992 35
1993 37
1994 42
1995 46
1996 48
1997 50
1998 52
1999 54
2000 58

Определить:

1. среднегодовой ввод жилых домов;

2. базисные, цепные и среднегодовых показатели абсолютного прироста, темпов роста и прироста ввода жилых домов.

3. на основе средних абсолютных приростов и темпов роста определить ожидаемый уровень ввода жилых домов в 2005 г.

4. изобразить динамику ввода жилых домов на графике.

Решение

1. Данный динамический ряд является интервальным, поэтому для определения среднегодового производства используем формулу арифметической простой:

=
,

то есть в среднем в год вводится 44,55 тыс. кв. м

2. Требуемые показатели рассчитываются по формулам:

· Абсолютный прирост:

· Темп роста:

· Темп прироста:

Полученные данные представим в таблице:

Год Введено общей площади, тыс. кв. м. Абсолютный прирост, млн. руб. Темпы роста, % Темпы прироста, %
к баз. к отч. к баз. к отч. к баз. к отч.
1990 33 0 - 100 - 0 -
1991 35 2 2 106,06 106,06 6,06 6,06
1992 35 2 0 106,06 100 6,06 0
1993 37 4 2 112,12 105,71 12,12 5,71
1994 42 9 5 127,27 113,51 27,27 13,51
1995 46 13 4 139,39 109,52 39,39 9,52
1996 48 15 2 145,45 104,35 45,45 4,35
1997 50 17 2 151,51 104,17 51,51 4,17
1998 52 19 2 157,58 104 57,58 4
1999 54 21 2 163,64 103,85 63,64 3,85
2000 58 25 4 175,76 107,41 75,76 7,41

Среднегодовой абсолютный прирост определим по формуле: