Смекни!
smekni.com

Фискальная политика (стр. 3 из 6)

1. Трехпараметрический метод. В основе данного метода лежит аппроксимация процесса экономического роста трехпараметрической квадратичной функцией, где в качестве аргумента выступает уровень налогового бремени:

Тогда в соответствии с (2) сумма налоговых поступлений определяется следующим образом:

В каждый момент времени объем ВВП зависит от уровня налогового бремени, причем характер этой зависимости задается формулой (4). Однако для однозначного определения трех параметров , и соотношения (4) недостаточно, в связи с чем необходимо составить еще два уравнения, включающие эти параметры. Такие уравнения можно записать, перейдя от функций (4) и (5) к их дифференциалам:

При переходе от (4) и (5) к соотношениям (6) и (7) нами использовалось предположение, что дифференциалы переменных X и удовлетворительно аппроксимируются конечными разностями: dX~X; dT~T; d~. Такое предположение традиционно для вычислительной математики и для рассматриваемого случая представляется вполне правомерным. Тогда в прикладных расчетах показатели X, T и означают приросты соответствующих величин за один временной интервал (год) между двумя отчетными точками, т. е.;;, где t – индекс времени (года).

Таким образом, уравнение (4) описывает “точечный” экономический рост, т. е. на конкретный момент времени t, в то время как уравнения (6) и (7) воспроизводят “интервальный” рост объема производства и налоговых сборов за период между текущей (t) и последующей (t+1) отчетными точками. В соответствии с данным подходом уравнения (4) и (5) задают семейства производственных и фискальных кривых, а соотношения (6) и (7) фиксируют их кривизну, тем самым позволяя выбрать из обозначенных семейств искомые функциональные зависимости.

Подобная схема расчетов основана на конструировании системы уравнений (4), (6) и (7) и ее решении относительно параметров , и , что позволяет охарактеризовать эту схему как аналитическую или алгебраическую. Решение системы (4), (6), (7) дает следующие формулы для оцениваемых параметров:

Идентификация параметров функций (4) и (5) позволяет элементарно определить точки Лаффера. При этом точка Лаффера первого рода *, когда dX/d=0, определяется по формуле

а точка Лаффера второго рода **, когда d2T/d2=0, находится в результате решения следующего квадратного уравнения

и в итоге вычисляется по формуле

Дополнительное исследование свойств функций (4) и (5) позволит определить, являются ли найденные стационарные точки точками Лаффера. Если стационарные точки окажутся точками локального минимума или их значения выйдут за область допустимых значений [0;1], то точки Лаффера отсутствуют.

Альтернативой рассмотренному трехпараметрическому методу может служить подход, базирующийся на использовании в качестве производственной функции усеченного полинома третьей степени:. При этом число параметров не меняется, оставаясь равным трем. В этом случае процедура отыскания лафферовых точек корректируется с учетом исходной кубической зависимости, а стационарные точки для фискальной кривой будут отыскиваться в результате решения кубического уравнения. Понятно, что такой алгоритм может генерировать две точки Лаффера второго рода. На наш взгляд, в силу большей однозначности и наглядности на практике следует использовать первый, базовый вариант трехпараметрического метода.

Следует отметить, что аналитический (алгебраический) метод оценки эффективности фискальной политики позволяет использовать функциональные зависимости с числом параметров, не превышающим трех. Большее число параметров требует добавления к базовой системе (4), (6), (7) дополнительных уравнений, что невозможно из-за узкой постановки исходной задачи.

2. Двухпараметрический метод. В основе данного метода лежит аппроксимация процесса экономического роста усеченной квадратичной функцией, включающей только два параметра:

Тогда сумма фискальных поступлений равна

Дополнительное ограничение, накладываемое на функциональные свойства производственной системы, задается уравнением, аналогичным

Построенная система уравнений (14), (16) достаточна для отыскания параметров и . Как и в случае использования трехпараметрического метода, уравнение (14) воспроизводит “точечные” свойства производственной системы, а уравнение (16) – “интервальные”. При этом вспомогательное уравнение, задающее динамические свойства фискальной системы, отсутствует; по умолчании считается, что получаемая сумма налогов полностью детерминируется активностью производственной системы и уровнем фискального давления.

Формулы для оценки параметров на основе решения (14), (16) имеют вид

Точки Лаффера первого и второго рода определяются из (14) и (15) по соответствующим формулам:

Анализ условий второго порядка показывает следующее: для того, чтобы стационарные точки (19) и (20) были действительно точками Лаффера, необходимо и достаточно выполнение двух неравенств: >0 и <0.

Сравнительный анализ методов оценки эффективности фискальной политики. В рамках класса алгебраических методов возможны два подхода к расчету эффективности фискальной системы с помощью точек Лаффера. Проанализируем особенности каждого из них с тем, чтобы выбрать наиболее приемлемый для дальнейших прикладных расчетов.

Прежде всего о эконометрическом подходе. Как указывалось выше, порядок полиномиальной регрессии не должен быть слишком высоким, так как по мере его роста утрачивается смысл эконометрической процедуры сглаживания. Дело в том, что в предельном случае, когда порядок полинома (1) будет равен -1, где – число отчетных ретроспективных точек (лет), количество параметров, подлежащих оценке, также будет равно . В такой ситуации пользоваться статистическими методами построения регрессии бессмысленно, ибо все параметры могут быть однозначно определены алгебраически с помощью процедуры интерполяции исходного динамического ряда X полиномом (1). Таким образом, в предельном случае статистические методы переходят в алгебраические, что иллюстрирует их изначальное методическое единство. Однако процедуры интерполяции, вообще говоря, следует избегать по целому ряду причин.

Во-первых, полиномы высокой степени требуют высокой точности расчетов, так как в противном случае накапливаются вычислительные погрешности. Во-вторых, полиномы выше четвертой степени порождают серьезные алгебраические проблемы при дальнейшем определении стационарных точек. В этом случае задача сводится к решению алгебраического уравнения высокой степени (пятой и выше), что само по себе представляет сложную задачу. Однако даже после ее решения в дальнейшем предстоит классифицировать все стационарные точки на локальные минимумы и максимумы, затем среди точек локального максимума выбрать те, которые являются точками Лаффера. В конечном счете помимо чисто вычислительных проблем придется решать еще проблему интерпретации полученных результатов, что также весьма непросто. В-третьих, сама процедура интерполирования априори предполагает, что имеется жесткая функциональная связь между объемом выпуска и уровнем налогового бремени. Хотя теоретически связь между этими переменными должна существовать, все же желательно, чтобы ее наличие было строго доказано. Кроме того, полиномиальная интерполяция, будучи технически безупречной, с содержательной точки зрения все же представляется несколько искусственной.

Между тем и построение регрессионной зависимости таит в себе целый ряд минусов. Во-первых, в России не накоплен информационный массив для формирования динамических рядов, позволяющих строить эффективные регрессионные модели. Во-вторых, в российской экономике переходного периода отсутствовала какая-либо устойчивость в развитии исследуемого процесса. Так, в одни годы увеличение налогового бремени сопровождалось сокращением ВВП, а в другие – увеличением. Фактически это означает, что некая гипотетическая функциональная связь между ВВП и налоговым бременем постоянно “ломалась” и для каждого короткого периода времени действовала своя производственная функция; попытка отыскать универсальную зависимость для всего периода исследования скорее всего обречена на неудачу. Именно этот факт и предопределяет необходимость использования двух- и трехпараметрического аналитических методов оценки точек Лаффера как наиболее простых и максимально адекватных нынешним экономическим условиям.

Использование параметрических методов базируется на предпосылке о существовании функциональной связи между объемом производства и уровнем налогового бремени. При этом вид этой связи является общим для всех анализируемых годов, меняются в ней лишь параметры. Последние оцениваются “скользящим” способом, т. е. для каждой пары лет отдельно. При этом первый, базовый год фигурирует в качестве основного, а второй – вспомогательного при определении параметров производственной функции первого года. Нам представляется, что такой подход наиболее перспективен и останется таковым в течение, по крайней мере, 5-6 лет, пока не будут накоплены данные о стабилизировавшемся процессе экономического роста.

При сопоставлении двух предложенных алгебраических методов можно сказать следующее. Достоинство трехпараметрического метода, прежде всего, – учет функциональных свойств как производственной (4), так и фискальной (5) функций. Следовательно, оцениваемые параметры одновременно “стягиваются” свойствами производственной и фискальной систем, которые на практике могут сильно различаться; в двухпараметрическом методе мы ограничиваемся свойствами только производственной кривой (14), что означает безусловное упрощение моделируемого процесса и ведет к огрублению получаемых оценок. Кроме того, сам вид исходной квадратичной производственной функции (4) является более общим по сравнению с формулой (14) и тем самым генерирует более богатую аналитическую схему. В этом смысле трехпараметрический метод более предпочтителен. Вместе с тем вычислительная простота, наглядность и элегантность конечных результатов двухпараметрической схемы расчета предопределяют выбор ее в качестве рабочей методики. Нам представляется, что для уяснения макроэкономической ситуации следует пользоваться предельно простыми алгоритмами, не ведущими к двусмысленным интерпретациям.