Смекни!
smekni.com

Частные вопросы экономической теории (стр. 2 из 3)

Заштрихованные прямоугольники показывают дополнительную полезность, полученную при потреблении каждой последующей единицы блага. На рис. 2.1 видно, что темп роста общей полезности убывает, ибо величина предельной полезности понижается. Главная функция предельной полезности (рис. 2.2) будет задавать наклон главной кривой общей полезности (рис. 2.1).

Рис. 2.1 Общая полезность


Рис. 2.2 Предельная полезность

Производственная функция

ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ - функция, отображающая зависимость между максимальным объемом производимого продукта и физическим объемом факторов производства при данном уровне технических знаний.

Поскольку объем производства зависит от объема использованных ресурсов, то зависимость между ними может быть выражена в виде следующей функциональной записи:

Q = f(L,K,M),

где Q - максимальный объем продукции, произведенной при данной технологии и определенных факторах производства;

L - труд; К - капитал; М - материалы; f - функция.

Производственная функция при данной технологии обладает свойствами, которые определяют соотношение между объемом производства и количеством используемых факторов. Для разных видов производства производственные функции различны, тем не менее все они имеют общие свойства. Можно выделить два основных свойства.

Существует предел для роста объема выпуска, который может быть достигнут ростом затрат одного ресурса при прочих равных условиях. Так, в фирме при фиксированном количестве машин и производственных помещений имеется предел роста выпуска путем увеличения дополнительных рабочих, поскольку рабочий не будет обеспечен машинами для работы.

Существует определенная взаимная дополняемость (комплектарность) факторов производства, однако без уменьшения объема выпуска вероятна и определенная взаимозаменяемость данных факторов производства. Так, для выпуска блага могут быть использованы различные комбинации ресурсов; можно произвести это благо при использовании меньшего объема капитала и большего объема затрат труда, и наоборот. В первом случае производство считается технически эффективным в сравнении со вторым случаем. Однако существует предел того, насколько труд может быть заменен большим объемом капитала, чтобы не сократилось производство. С другой стороны, имеется предел применения ручного труда без использования машин.

В графической форме каждый вид производства может быть представлен точкой, координаты которой характеризуют минимально необходимые для выпуска данного объема продукции ресурсы, а производственная функция - линией изокванты.

Рассмотрев производственную функцию фирмы, перейдем к характеристике следующих трех важных понятий: общего (совокупного), среднего и предельного продукта.

На рис. 3, а показана кривая общего продукта (ТР), который изменяется в зависимости от величины переменного фактора X. На кривой ТР отмечены три точки: В - точка перегиба, С - точка, которая принадлежит касательной, совпадающей с линией, соединяющей данную точку с началом координат, D - точка максимального значения ТР. Точка А перемещается по кривой ТР. Соединив точку А с началом координат, получим линию ОА. Опустив перпендикуляр из точки А на ось абсцисс, получим треугольник ОАМ, где tg а есть отношение стороны AM к ОМ, т. е. выражение среднего продукта (АР).


Рис. 3 а) Кривая общего продукта (ТР); б) кривая среднего продукта (АР) и предельного продукта (МР)

Проведя через точку А касательную, получим угол Р, тангенс которого будет выражать предельный продукт МР. Сопоставляя треугольники LAM и ОАМ, находим, что до определенного момента тангенс Р по величине больше tg а. Таким образом, предельный продукт (МР) больше среднего продукта (АР). В том случае, когда точка А совпадает с точкой В, тангенс Р принимает максимальное значение и, следовательно, предельный продукт (МР) достигает наибольшего объема. Если точка А совпадает с точкой С, то значение среднего и предельного продукта равны. Предельный продукт (МР), достигнув максимального значения в точке В (рис. 22, б), начинает Сокращаться и в точке С пересечется с графиком среднего продукта (АР), который в этой точке достигает максимального значения. Затем и предельный, и средний продукт сокращаются, но предельный продукт уменьшается опережающими темпами. В точке максимума общего продукта (ТР) предельный продукт МР = 0.

Мы видим, что наиболее эффективное изменение переменного фактора X наблюдается на отрезке от точки В до точки С. Здесь предельный продукт (МР), достигнув своего максимального значения, начинает уменьшаться, средний продукт (АР) еще увеличивается, общий продукт (ТР) получает наибольший прирост.

Замещаемость производственных факторов

Угловой коэффициент каждой изокванты указывает, каким образом происходит замещение одного фактора производства другим при сохранении постоянного объема продукции. Абсолютное значение углового коэффициента называется предельной нормой технологического замещения (MRTS). MRTS труда капиталом представляет собой величину, на которую может быть сокращен капитал за счет использования одной дополнительной единицы труда при фиксированном объеме выпуска продукции. MRTS всегда является положительной величиной. В математической форме:

MRTS = –ΔК/ΔL,

где ΔК и ΔL представляют собой относительно небольшие изменения капитала и труда для отдельной изокванты (т. е. для постоянного Q).

Заметим, что на рис. 6 предельная норма технологического замещения (–ΔК/ΔL) равна 2, когда затраты труда увеличиваются с 1 единицы до 2 и выпуск продукции фиксируется на уровне 75 единиц. Однако MRTS снижается до 1, когда затраты труда возрастают с 2 до 3, а впоследствии уменьшаются с 2/3 до 1/3. Ясно, что чем больше труда замещается капиталом, тем менее производительным становится труд, а использование капитала становится относительно более эффективным. Поэтому, чтобы сохранить постоянным объем выпуска продукции, необходимо сократить минимальное количество капитала, в этом случае изокванта приобретает более плоскую форму.

Рис. 4. Предельная (маргинальная) норма технического замещения


Изоквантные кривые имеют вогнутую форму – MRTS сокращается по мере движения вниз вдоль изокванты. Уменьшение предельной нормы технического замещения говорит о том, что эффективность использования любого производственного фактора ограничена. По мере замещения в производственном процессе капитала большим количеством труда производительность труда снижается. Аналогичным образом когда труд замещается большим количеством капитала, его отдача снижается. Производству требуется сбалансированное сочетание обоих производственных факторов.

Как мы и предполагали, MRTS тесно связана с предельными продуктами труда МРL и капитала МРK. Объем дополнительного выпуска в результате увеличения трудозатрат = MPL · ΔL; сокращение выпуска в результате уменьшения капитала = МРK · ΔК. Так как мы сохраняем объем выпуска продукции постоянным для всей изокванты, изменение объема выпуска продукции равно нулю. Таким образом:

MPL · ΔL + МРK · ΔК = 0.

Теперь, меняя условия, мы видим, что

MPL · МРK = –ΔК/ΔL = MRTS.

Уравнение говорит о том, что для отдельной изокванты непрерывное замещение капитала трудом в производственном процессе приводит к росту предельного продукта капитала и уменьшению предельного продукта труда. Общим результатом обоих изменений является тенденция к снижению предельной нормы технического замещения и выравниванию изокванты.

Отдача от масштаба выражает реакцию объема производства продукции на пропорциональное изменение количества всех факторов производства.

Различают три положения отдачи от масштаба.

Возрастающая отдача от масштаба - положение, при котором пропорциональное увеличение всех факторов производства приводит ко все большему увеличению объема выпуска продукта (рис. 5.1). Предположим, что все факторы производства увеличились в два раза, а объем выпуска продукта увеличился в три раза. Возрастающая отдача от масштаба обусловлена двумя основными причинами. Во-первых, повышением производительности факторов вследствие специализации и разделения труда при росте масштаба производства. Во-вторых, увеличение масштаба производства зачастую не требует пропорционального увеличения всех факторов производства. Например, увеличение вдвое производства цилиндрического оборудования (такого как трубы) потребует увеличения металла меньше чем вдвое.

Постоянная отдача от масштаба - это изменение количества всех факторов производства, которое вызывает пропорциональное изменение объема выпуска продукта. Так, вдвое большее количество факторов ровно вдвое увеличивает объем выпуска продукта (рис. 5.2).

Убывающая отдача от масштаба - это ситуация, при которой сбалансированный рост объема всех факторов производства приводит ко все меньшему росту объема выпуска продукта. Иначе говоря, объем выпускаемой продукции увеличивается в меньшей степени, чем затраты факторов производства (рис. 5.3). Например, все факторы производства увеличились в три раза, а объем производства продукции - только в два раза.

Рис. 5.1, 5.2, 5.3 Убывающая отдача от масштаба


Таким образом, в производственном процессе имеют место возрастающая, постоянная и убывающая отдача от масштаба производства, когда пропорциональное увеличение количества всех факторов приводит к увеличившемуся, постоянному или убывающему приростам объема выпуска продукта.