Корреляционная таблицаохватывает два ряда распределения: один ряд представляет факторный признак, а другой - результативный. Концентрация частот около диагонали, соединяющей левый верхний угол с правым нижним углом таблицы, выражает прямую связь, и наоборот, концентрация частот около диагонали, соединяющей левый . нижний угол с правым верхним углом таблицы, выражает обратную связь. Интенсивная концентрация частот около диагонали таблицы указывает на существование тесной корреляционной связи. Корреляционная таблица дает более правильную характеристику связи при условии, что число групп по двум признакам одинаково.
Графический методсостоит в построении графиков. На графике значения факторного признака наносятся на ось абсцисс, а результативного признака - на ось ординат. Если нанести на график средние значения результативного признака, то получим ломаную линию, которая называется эмпирической линией регрессии.
3. Корреляционно-регрессионный анализ. Уравнение парной регрессия: экономическая интерпретация и оценка значимости
Основная задача корреляционного анализазаключается в выявлении взаимосвязи между случайными переменными путем точечной и интервальной оценки парных (частных) коэффициентов корреляции, вычисления и проверки значимости множественных коэффициентов корреляции и детерминации. Кроме того, с помощью корреляционного анализа решаются следующие задачи: отбор факторов, оказывающих наиболее существенное влияние на результативный признак, на основании измерения степени связи между ними; обнаружение ранее неизвестных причинных связей. Корреляция непосредственно не выявляет причинных связей между параметрами, но устанавливает численное значение этих связей и достоверность суждений об их наличии.
Регрессионный анализ предназначен для исследования зависимости исследуемой переменной от различных факторов и отображения их взаимосвязи в форме регрессионной модели.
В регрессионных моделях зависимая (объясняемая) переменная Y может быть представлена в виде функции f (X1, X2, X3, … Xm), где X1, X2, X3, … Xm - независимые (объясняющие) переменные, или факторы. В качестве зависимой переменной может выступать практически любой показатель, характеризующий, например, деятельность предприятия или курс ценной бумаги. В зависимости от вида функции f (X1, X2, X3, … Xm) модели делятся на линейные и нелинейные. В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии).
Связь между переменной Y и m независимыми факторами можно охарактеризовать функцией регрессии Y= f (X1, X2, X3, … Xm), которая показывает, каково будет в среднем значение переменной yi, если переменные xi примут конкретные значения.
Данное обстоятельство позволяет использовать модель регрессии не только для анализа, но и для прогнозирования экономических явлений.
Под линейностью здесь имеется в виду, что переменная y предположительно находиться под влиянием переменной x в следующей зависимости:
,
где
- постоянная величина (или свободный член уравнения), - коэффициент регрессии, определяющий наклон линии, вдоль которой рассеяны данные наблюдений. Это показатель, характеризующий изменение переменной , при изменении значения на единицу. Если - переменные и положительно коррелированные, если < 0 – отрицательно коррелированны; - независимые одинаково распределенные случайные величины – остаток с нулевым математическим ожиданием ( ) и постоянной дисперсией ( ). Она отражает тот факт, что изменение будет неточно описываться изменением Х – присутствуют другие факторы, неучтенные в данной модели.Для оценки параметров регрессионного уравнениянаиболее часто используют метод наименьших квадратов (МНК), который минимизирует сумму квадратов отклонения наблюдаемых значений
от модельных значений .Согласно принципу метода наименьших квадратов, оценки и находятся путем минимизации суммы квадратов
по всем возможным значениям и при заданных (наблюдаемых) значениях
. Задача сводится к известной математической задаче поиска точки минимума функции двух переменных. Точка минимума находится путем приравнивания нулю частных производныхфункции по переменным и . Это приводит к системе нормальных уравненийрешением которой и является пара , . Согласно правилам вычисления производных имеем
так что искомые значения , удовлетворяют соотношениям
Эту систему двух уравнений можно записать также в виде
Эта система является системой двух линейных уравнений с двумя неизвестнымии может быть легко решена, например, методом подстановки. В результате получаем
(3.2)Такое решение может существовать только при выполнении условия
что равносильно отличию от нуля определителя системы нормальных уравнений. Действительно, этот определитель равен
Последнее условие называется условием идентифицируемостимодели наблюдений
, и означает, что не все значения совпадают между собой. При нарушении этого условия всеточки , лежат на однойвертикальной прямойОценки и называют оценками наименьших квадратов. Обратим еще раз внимание на полученное выражение для . Нетрудно видеть, что в это выражение входят уже знакомые нам суммы квадратов, участвовавшие ранее в определении выборочной дисперсии