Эти характеристики широко используются в социальной статистике. Например, при изучении дифференциации населения по размеру среднедушевого дохода.
Виды и формы степенных средних
Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по первичным (не сгруппированным) данным и имеет следующую общую формулу:
,где
- индивидуальные значения признака (варианты); - число вариант; - показатель степени.Взвешенная средняя считается по вторичным (сгруппированным) данным и имеет общую формулу:
где
- веса средней, т.е. значения признака, участвующего в определении экономического содержания рассчитываемого показателя.В зависимости от того, какое значение принимает показатель степени
, различают следующие виды степенных средних (см. табл. 1).Таблица 1
Вид степенной средней | Показатель степени | Формула расчета | |
Простая | Взвешенная | ||
Арифметическая | 1 | ||
Квадратическая | 2 | ||
Гармоническая | -1 | ||
Геометрическая | 0 |
где
Если рассчитать все виды средних для одних и тех же исходных данных, то значения окажутся неодинаковыми. Здесь действует правило мажорантности средних: чем выше показатель степени, тем больше по величине и сама средняя:
И значит, если мы подберем неправильно вид средней, то рискуем или завысить, или занизить истинную среднюю величину данного признака.
Каждый показатель имеет свое, только ему присущее экономическое содержание. В общем виде количественное исходное соотношение, для исчисления средней величины (ИСС) будет следующим:
Объем варьирующего признака
Средняя величина (ИСС)= --------------------------------------------
Объем совокупности
При выборе вида и формы средней величины надо исходить из экономического содержания показателя, среднюю величину которого вычисляем и его взаимосвязи с общим объемом варьирующего признака. Общий объем варьирующего признака не должен изменяться при замене индивидуальных значений признака средней величиной – это определяющее свойство средней. Оно является в статистике критерием для подбора вида средней.
2. Средняя арифметическая и условия ее применения
Средняя арифметическая применяется в тех случаях, когда объем варьирующего признака всей совокупности образуется как сумма значений этого признака у ее отдельных единиц.
Средняя арифметическая представляет собой ту величину признака, которую имела бы каждая единица совокупности, если бы общий итог признака был равномерно распределен между всеми единицами совокупности. Используется две формы средней арифметической. Для первичных данных – простая средняя арифметическая
(4), для вторичных данных – средняя арифметическая взвешенная (5).Среднюю арифметическую целесообразно использовать в тех случаях, когда разрыв между минимальным и максимальным значениями признака достаточно невелик (они не отличаются друг от друга в несколько десятков или сотен раз.
Свойства средней арифметической.
1. Произведение средней варианты на сумму частот всегда равно сумме произведения вариант на их частоты
.2. Если к каждому значению признака вариационного ряда добавить (или отнять) одно и то же число А, то это все равно, что прибавить (или отнять) это число к средней арифметической величине этого ряда
.3. Если каждый признак ряда умножить (или разделить) на постоянное число А, то это все равно, что умножить (или разделить) на это число среднюю арифметическую величину ряда.
4. Если пропорционально изменить частоты, то средняя от этого не изменится (можно частоты умножить (или делить) на одно и то же число средняя арифметическая от этого не изменится). Это свойство дает возможность частоты заменить удельными весами, называемыми частостями, а также, когда частоты всех вариант одинаковы, вычислять средние по формуле простой средней арифметической. Это свойство важно тогда, когда абсолютные числа – частоты не известны, а известны лишь удельные веса, то есть относительные величины структуры совокупности. Тогда средняя вычисляется так
, если - в процентах или , если - в долях единицы.5. Средняя сумма (разности) двух или нескольких величин равна сумме (разности) их средних.
6. Нулевое свойство средней арифметической. Сумма положительных отклонений от средней арифметической равна сумме отрицательных отклонений от средней арифметической. Сумма всех отклонений индивидуальных значений признака от средней арифметической всегда равна нулю. Именно благодаря этому свойству средняя арифметическая широко применяется в статистике как средство для погашения «сглаживания» случайных отклонений изучаемого признака у отдельных единиц наблюдаемой статистической совокупности.
Пример 4.4
По исходным данным примера 2.1. расчет средней сменной выработки осуществляется по средней арифметической простой:
г.Применение простой средней арифметической объясняется тем, что объем варьирующего признака для всей совокупности – общее число проработанных лет работниками (61 год) образуется как сумма стажей каждого работника.
Пример 4.5. Расчет среднего производственного стажа работников на основе ряда распределения
Стаж, г. | Число работников | Середина интервала | |
2-55-88-11 | 452 | 3,56,59,5 | 14,032,519,0 |
Итого | 11 | 65,5 |
В данном случае следует воспользоваться формулой средней арифметической взвешенной, поскольку данные вторичные. Интервальные значения признака встречаются не один раз (т.е. повторяются) и эти числа повторений (частоты) не одинаковы.
Конкретными значениями признака, которые должны непосредственно участвовать в расчетах служат середины (центры) интервалов, весами – частоты.
Данный результат отличается от результата, полученного на основе средней арифметической простой. Это объясняется тем, что на основе ряда распределения мы уже не располагаем исходными индивидуальными данными, а вынуждены ограничиться лишь сведениями о величине середины (центра) интервала.
Пример 4.6. Просроченная задолженность по кредитам предприятиями фирмы за отчетный год характеризуется следующими данными:
№ предприятия фирмы | Задолженность по кредитам, тыс. руб. | Удельный вес просроченной задолженности, % | |
123 | 350040002000 | 153020 | 5250012000040000 |
Итого | 9500 | 212500 |
Определить средний процент просроченной задолженности фирмы.
Решение: Основой расчета является экономическое содержание показателя.
Удельный вес Объем просроченной задолженности
просроченной = -------------------------------------------------------- ∙ 100