Смекни!
smekni.com

Средние величины и показатели вариации (стр. 6 из 7)

Определить средний уровень, дисперсию и среднее квадратическое отклонение признака

Решение

Практическое применение вариации альтернативного признака в основном состоит в построении доверительных интервалов при проведении выборочного наблюдения.

7. Изучение формы распределения признака. Основные характеристики закономерностей распределения

Непременным условием успешности построений, исчислений и выводов на основе вариационных рядов является однородность обобщаемых в них совокупностей, устанавливаемая на базе глубокого теоретического анализа.

Четко выраженный порядок изменения частот в соответствии с изменением величины признака называют закономерностью распределения.

Знание типа закономерности распределения, (а следовательно, и формы кривой) необходимо прежде всего:

1. Для выяснения типичности условий получения первичного статистического материала. Так, появление многовершинной или существенно асимметричной кривой говорит о разнотипном составе совокупности и о необходимости перегруппировки данных с целью выявления более однородных групп.

2. Для обеспечения правильности выполнения практических расчетов и прогнозов. Так, применение формулы Г. Стерджесса для расчета оптимального числа групп интервального ряда, правила «трех сигм», коэффициента вариации Vσвкачестве индикатора однородности совокупности, метода наименьших квадратов при моделировании корреляционной связи явлений, методов дисперсионного анализа и других правомочно лишь в условиях нормального и близких к нему распределений.

Закономерности вариационных рядов, выражающие в типе распределения их частот, наглядно выступают на графиках – гистограмме и полигоне распределения частот. Их рассмотрение показывает, что в гистограмме наблюдается большая скачкообразность распределения, а в полигоне обнаруживается постепенность перехода от одной группы к другой. Ломаная линия полигона частично сглаживает скачкообразность гистограммы, является более обобщенным приемом анализа распределения.

При увеличении строк интервального вариационного ряда и соответственном уменьшении величины его интервалов число сторон полигона распределения будет расти и ломаной линии будет присуща тенденция превратиться в пределе в некую кривую. Такая кривая называется кривой распределения. В ней происходит наибольшее освобождение данных от влияния случайных факторов. Она выявляет и показывает в максимально обобщенном виде характер вариации, закономерность распределения частот внутри однокачественной совокупности явлений.

Кривые распределения могут быть разных типов. В практике социально-экономических исследований широко применяется кривая нормального распределения. Она представляет собой одновершинную симметричную колоколообразную фигуру, правая и левая ветви которой равномерно и симметрично убывают, асимптотически приближаясь к оси абсцисс.

Отличительной особенностью этой кривой является совпадение в ней средней арифметической, моды и медианы. Если всю площадь между кривой и осью абсцисс принять за 100%, то в пределах

заключено 68,3% частот, в пределах
- 95,4%, в пределах
99,7% («правило трех сигм»).

Хотя нормальное, или симметричное, распределение соответствует природе ряда явлений, однако для общественных явлений оно нехарактерно, так как в нем отражаются различия, вызванные внешними воздействиями, присущие не развивающейся, а лишь колеблющейся совокупности единиц. Для социальных явлений характерно развитие, динамизм. Поэтому ряды и кривые распределения частот общественных явлений, как правило, асимметричны, в них частоты возрастают до максимума и убывают от него неравномерно. Именно наличие асимметрии, или скошенности, в рядах однородных совокупностей служит косвенным указанием на то, что исследуемый процесс проходит активную стадию развития.

Асимметричные ряды и соответствующие кривые имеют различные формы распределений, исследованные математической статистикой. Такими формами являются распределение Пуассона, распределение Максвелла, распределение Пирсона и др. Здесь асимметричность рассматривается в целом как единый тип распределения. При этом различают правостороннюю и левостороннюю асимметрии (скошенность).

Если длинная ветвь кривой расположена правее вершины, то асимметрия называется правосторонней, если эта ветвь расположена левее вершины – левосторонней. При правосторонней асимметрии

при левосторонней
. Поэтому разность между ними, отнесенную к
, называют коэффициентом К. Пирсона и используют в качестве коэффициента асимметрии:

. (20)

При правосторонней асимметрии этот коэффициент положителен, при левосторонней – отрицателен. Если

= 0, вариационный ряд симметричен. Чем больше абсолютная величина коэффициента, тем больше степень скошенности.

Наиболее точным показателем асимметрии распределения является коэффициент асимметрии

, вычисляемый по формуле

(21)

где n – число единиц совокупности. Как и в случае коэффициента Пирсона, при

> 0 имеет место правосторонняя асимметрия, при
< 0 левосторонняя. В симметричных распределениях
= 0.

Чем больше величина |

|, тем более асимметрично распределение. Установлена следующая оценочная шкала асимметричности:

|

|
- асимметрия незначительная;

0,25 < |

|
- асимметрия заметная (умеренная);

|

| > 0,5 - асимметрия существенная.

Поскольку коэффициенты

и
являются относительными безразмерными величинами, они часто применяются для сравнительного анализа асимметричности различных рядов распределения.

Характер асимметрии иногда указывает на направление развития. При исследовании вариации признаков, в отношении которых имеется заинтересованность в их увеличении (выполнение норм, выпуск продукции и т.д.), правосторонняя асимметрия свидетельствует о прогрессивности развития, о том, что оно идет в сторону увеличения показателя, а левосторонняя асимметрия указывает на наличие большого числа отстающих участков.

При исследовании вариации признаков, в отношении которых имеется заинтересованность в их уменьшении (себестоимость, трудоемкость, расход сырья на единицу продукции и т.п.), правосторонняя асимметрия свидетельствует о недостатках в развитии изучаемого процесса, левосторонняя – о прогрессивности его развития, о том, что последнее идет в сторону уменьшения показателя. В распределении работников по стажу (см. пример 4.9

= 5,75
) наблюдается правосторонняя асимметрия, так как коэффициент асимметрии положителен: (5,955-5,75):2,47=0,095. Такая асимметрия для данного ряда прогрессивна, она свидетельствует о развитии ряда в сторону увеличения исследуемого показателя.

Форму распределения можно ориентировочно определить непосредственно рассмотрением эмпирических данных ряда, особенно если они изображены гистограммой и полигоном. Чтобы убедиться в правильности ориентировочного определения формы распределения, эмпирические данные ряда исследуются на их близость к теоретическому распределению, устанавливаемому с помощью построения соответствующей кривой распределения. Однако во многих случаях ни теория, ни непосредственное рассмотрение эмпирических данных не дают ответов на вопрос о форме распределения. Тогда обычно ведется исследование на близость эмпирических данных к нормальному распределению, так как распределения с небольшой или умеренной асимметричностью в большинстве случаев по своему типу относятся к нормальным.

Для объективного суждения о степени соответствия эмпирического распределения нормальному в статистике используется ряд критериев, называемых критериями согласия или соответствия.