Смекни!
smekni.com

Газоснабжение рабочего поселка на 8,5 тыс. жителей (стр. 7 из 20)

а) отказ участка 1-2:

При отказе участка расчет ведем следующим образом:

Участок 1-2:

Vр = 0,7·460= 322 м3

d = 219мм

По номограмме определяем действительную величину квадрата давления:

Определяем давление в конце участка по формуле:

где Pн – давление газа в начале сети (участка)

Участок 2-1

Vр = 0,7·460 = 322 м3/ч;

d = 219мм;

Rд = 131,6 кПа/м;

Аналогично выполняется расчет остальных участков.

Рассчитываем участки ответвлений для аварийных режимов. Из сравнения двух значений начальных давлений для каждого ответвления pн отв выбирается меньшее. Для этого давления подбирается длина ответвления при условии чтобы давление в конце ответвления pк отв было не меньше 100 кПа. Диаметр должен быть не менее 50 мм.

Данные по расчету сводим в таблицу 4.5

№ участка Длина участка, м Расход, м3 Диаметр участка, мм
1 2 3 4
1-2 12,5 460 219
2-3 12,2 920 219
3-4 34 1380 219

4.3 Гидравлический расчет тупиковой дворовой сети низкого давления

Городские сети обычно прокладываются под проезжей частью внутриквартальных проездов и улиц. Ширина проездов должна обеспечивать необходимый разрыв от здания до газопровода. Величина разрывов регламентируется по [2] в зависимости от величины давления в газопроводе. При давлении газа до 5 кПа величина разрыва составляет 2 м. Гидравлический расчет тупиковой дворовой сети низкого давления проводят в следующей последовательности:

1) на генплане квартала проектируют газовые сети по тупиковой схеме;

2) намечают расчетные участки от точки подключения распределительного уличного газопровода до отключающего устройства на вводе в здание;

3) определяют расчетный расход газа м³/ч по участкам по формуле

(4.10)

где

- коэффициент одновременности работы газовых приборов по [2]

- номинальный расход газа на прибор, м³/ч

- число однотипных приборов, шт.

Для укрупненных значений

можно принять для ПГ-4 – 1,1 м³/ч, для ВПГ – 2,2 м³/ч

4) определяют среднеориентировочные удельные потери давления на

расчетной ветке от точки подключения до наиболее удаленного

газифицируемого здания по формуле

(4.11)

где 250 – нормативный перепад давления;

1,1 – потеря давления на местные сопротивления;

– суммарная длина расчетной ветки, м.

Диаметр участка газопровода определяем по расчетным расходам газа и значениям удельных ориентировочных потерь давления (по номограмме).

По формуле определяем расчетный расход газа на участке:

V1-2 = 3,8∙2∙12∙0,325=29,64 м3/ч.

V2-3 = (7,6∙12∙2+7,6∙28)∙0,217= 85,7 м3/ч.

V3-4 = (7,6∙12∙2+7,6∙28∙2)∙0,192 = 116,7 м3/ч.

V4-5 = (608+7,6∙12∙2)∙0,1865= 147,4 м3/ч.

V5-6 = (790,4+7,6∙12+7,6∙28)∙0,175 = 191,52 м3/ч.

V6-7 = (1094,4+7,6∙12)∙0,17 = 201,5 м3/ч.

V7-8 = 201,5 м3/ч..


Данные расчета сводим в таблицу 4.5.

Потери давления,Па на участках определим по формуле:

∆Р = Rд·l, (4.12)

где Rд - действительные удельные потери давления, по номограмме, Па/м

l – длина участка в метрах, м

∆Р1-2 = 1∙16 = 16 Па

∆Р2-3 = 2,5∙40 = 100 Па

∆Р3-4 = 1,6∙33 = 52,8 Па

∆Р4-5 = 2,2∙24 = 52,8 Па

∆Р5-6 = 1,5∙40 = 60 Па

∆Р6-7 = 1,4∙35 = 49 Па

∆Р7-8 =1,4∙23= 32,2 Па

Средние ориентировочные удельные потери давления:

Данные расчета сводим в таблицу 4.5.


Гидравлический расчёт тупиковой дворовой сети низкого давления Таблица 4.5.

№ Уч-ка Длина участка l, м Расчетный расход газа V, м3 Средние ориентировоч-ные удельные потери давления Rор, Па/м Диаметр участка Д, мм Потери давления
Действительные удельные потери давления Rд,Па/м Потери давления на участке ∆Р, Па
1 2 3 4 5 6 7
1-2 16 29,64 1,07 70 1 16
2-3 40 85,7 1,07 80 2,5 100
3-4 33 116,7 1,07 100 1,6 52,8
4-5 24 147,4 1,07 100 2,2 52,8
5-6 40 191,5 1,07 125 1,5 60
6-7 35 201,5 1,07 125 1,4 49
7-8 23 201,5 1,07 125 1,4 32,2

Потери давления на участке не превышают допустимых потерь (250 Па), расчет окончен.

Раздел 5. Патентный поиск

5.1 Вводная часть

В настоящее время в России газификация городов природным газом получила широкое распространение по сравнению с другими видами топлив. Это обусловлено, прежде всего, невысокими капитальными затратами в систему газоснабжения, удобством эксплуатации газовых сетей и приборов, более высоким коэффициентом полезного действия газовых приборов, самым низким уровнем ущерба окружающей среде, возможности полной автоматизации работы сетей и приборов.

При разработке данного дипломного проекта были применены новые запатентованные блочные котельные, описание, достоинства и недостатки которых приведены ниже.

5.2 Изучение и анализ конструкций блочных котельных

5.2.1 Конструкция блочной котельной [6]

Изобретение относится к области теплотехники, в частности к газовым емкостным водонагревателям, и может быть использовано для нагрева воды и негорючих водных растворов в различных отраслях промышленности. Задача изобретения - создание надежного в эксплуатации емкостного газового водонагревателя за счет предотвращения коррозии жаровых труб путем исключения конденсации водных паров внутри каждой из них. Поставленная задача решается в водонагревателе, содержащем резервуар с крышей, внутри которого расположены Г-образные жаровые трубы, горизонтальные участки каждой из которых подключены к горелочному устройству и расположены на опорах, установленных на днище резервуара под вертикальными участками, каждый из которых имеет соосно размещенный с ним патрубок, причем длину горизонтального участка каждой из Г-образных жаровых труб выбирают по заданной зависимости. При этом водонагреватель дополнительно снабжен блоком управления, подключенным к датчику температуры, расположенному внутри резервуара на его стенке, и к горелочному устройству, взрывным клапаном, подогревателями газа, жестко закрепленными в стенке резервуара и расположенными компланарно по отношению к каждому из горизонтальных участков Г-образных жаровых труб.

Рис.1

5.2.2 Конструкция водонагревателя [7]

Известен водонагреватель (см. патент РФ 2028554 по кл. F 24 Н 1/28, опубл. 1983 г.)[9], содержащий корпус, состоящий из верхней и нижней емкостей, расположенных одна над другой, снабженных патрубками дл подвода и отвода нагреваемой жидкости, расположенную в корпусе и погруженную в последний жаровую трубу, выполненную в виде спирально-конического змеевика, состоящего соответственно из нижнего и верхнего участков, соединенных между собой перепускным патрубком, расположенным в верхней емкости, причем один конец змеевика подключен к горелочному устройству. Верхняя емкость корпуса выполнена в виде конусообразной воронки, сливной патрубок расположен в нижней емкости и выполнен по спирали, имеющей направление закрутки, совпадающее с направлением закрутки верхнего участка змеевика, и противоположное направлению закрутки нижнего его участка. Однако конструкция данного водонагревателя сложна в изготовлении и ненадежна в эксплуатации за счет выполнения жаровых труб в виде спирально-конического змеевика. Кроме этого, недостатком данной конструкции является непродолжительный срок службы водонагревателя из-за коррозии жаровой трубы, обусловленной конденсацией в ней водяных паров, а также сложность эксплуатации горелки из-за присутствия сконденсированной влаги в жаровой трубе.

Для решения поставленной задачи в водонагревателе емкостном газовом, содержащем резервуар с крышей, внутри которого расположены Г-образные жаровые трубы, горизонтальные участки каждой из которых подключены к горелочному устройству и расположены на опорах, установленных на днище резервуара под вертикальными участками, каждый из которых имеет соосно размещенный с ним патрубок, согласно изобретению, длину горизонтального участка каждой из Г-образных жаровых труб выбирают из условия:

L=[GC(tвых -tвх)n-1 -KpDH(tст -0,5(tвых +tвх))]:[KpD(tст -0,5(tвых +tвх))], (5.1)

где L - длина горизонтального участка Г-образной жаровой трубы, м;