Критичні межі D залежать від кількості членів ряду п і кількості параметрів моделі т. У додатку 8 наведено критичні значення D для додатної автокореляції при
= 0,05. Перевірка від'ємної автокореляції проводиться на основі значень (4 – D).За даними табл. 7.1 D = 1,831, що потрапляє в інтервал допустимих значень гіпотези
, а отже, істотність автокореляції не доведено. Аналогічний висновок дає перевірка гіпотези за допомогою циклічного коефіцієнта автокореляції, значення якого = 0,085 значно менше за критичне (11) = 0,353. Відсутність автокореляції залишків підтверджує адекватність моделі. Характерною рисою механізму формування варіації та динаміки соціально-економічних показників є запізнення впливу факторів, коли причина і наслідок розірвані в часі (наприклад, інвестиції в іригацію і введення в дію зрошувальних земель). Часові лаги зумовлені тривалістю виробничого циклу, інерційністю процесів, наявністю зворотного зв'язку тощо. Для оцінювання ефектів запізнення впливу i-го фактора в модель вводиться лагова змінна . Фактори, що мають два і більше лагів (розподілений у часі лаг), вводяться в модель блоками лагових змінних. Загальний вигляд моделі з розподіленими лагами:де p = 0, 1,...,k — лаги; т — кількість включених у модель факторів.
Теоретично модель з розподіленими лагами можна узагальнити на будь-яку кількість факторів, проте практична реалізація такої моделі натикається на непереборні труднощі, зумовлені обмеженістю динамічних рядів і складністю внутрішньої їх структури. Як правило, в модель включаються такі лагові змінні, для яких лаги обґрунтовано теоретично і перевірено емпірично. Інструментом визначення лагів слугує взаємокореляційна функція, яка являє собою множину коефіцієнтів кореляції між рядами
та y зсуненими відносно один до одного на лаг р. Зі збільшенням лага взаємокореляційна функція згасає. У табл. 3.4 наведено коефіцієнти кореляції між попитом на легкові автомобілі у та двома факторами: середньодушовим доходом та цінами х2.Таблиця 3.4
Лаг | ||
0 | 0,823 | 0,612 |
1 | 0,646 | 0,441 |
2 | 0,416 | 0,187 |
3 | 0,098 | 0,098 |
Для фактора
істотними виявилися лаги p = 0,1,2; для фактора х2— лаги p = 0,1. Модель набуває вигляду: .де параметри
i характеризують ефекти впливу факторів з відповідними лагами, параметр с — вплив неідентифікованих факторів (мода, смаки тощо).Через обмеженість динамічних рядів соціально-економічних явищ неможливо врахувати в моделі усі особливості розвитку процесу. Аби розширити інформаційну базу моделі, практикують об'єднання просторових і динамічних рядів. Скажімо, описується залежність
заданими по 10 об'єктах за п'ять років. Можливі різні варіанти використання такої змішаної статично-динамічної інформації. Розглянемо два з них.1. Динамізація просторових моделей. Для кожного i-го року визначається статична модель
.У нашому прикладі їх буде п'ять. Коефіцієнти регресії статичних моделей утворюють динамічні ряди. Якщо ефект впливу i-го фактора змінюється в часі, то така зміна виявиться трендом ряду . Методом екстраполяції тренда можна визначити очікуваний ефект впливу на період упередження . Водночас визначається прогнозний рівень самого фактора . Поєднання цих прогнозів дає прогноз функції y: .За відсутності тренда коефіцієнта регресії в прогнозній моделі використовують середнє його значення. В табл. 3.5 наведено фрагменти динамічних рядів параметрів регресійної моделі продуктивності праці в цементній промисловості (тонн на одного робітника). Фактори:
— енергоозброєність праці, кВт-г; — продуктивність цементних печей т/г; — коефіцієнт використання календарного часу роботи цементних печей.Таблиця 3.5
Рік | |||
1 | 11,8 | 11,3 | 18,5 |
2 | 11,5 | 11,9 | 19,1 |
3 | 11,3 | 12,2 | 17,7 |
4 | 10,6 | 13,4 | 18,2 |
5 | 9,9 | 13,7 | 18,6 |
Як видно з даних таблиці, в цементній промисловості відбувається перерозподіл ефектів впливу факторів на продуктивність праці: зменшується вплив енергоозброєності праці (
), збільшується вплив продуктивності устаткування (х2) і практично незмінним залишається вплив використання календарного часу устаткування (х3).Прогнозування ефектів впливу факторів та їх рівнів можна здійснити у будь-який спосіб, обґрунтувавши функціональний вид прогнозної моделі. Звісно, щоб характер динаміки чітко виявився, довжина динамічного ряду має бути достатньою. Умова достатності інформації стосується і просторового ряду.
2. Модель об'єкто-періодів. У невеликих за обсягом сукупностях просторові та динамічні ряди об'єднуються в один інформаційний масив, одиницею якого є об'єкто-період. Для 10 об'єктів і п'яти років маємо 10*5=50 об'єкто-періодів. Такий підхід до об'єднання просторово-динамічних рядів значно розширює інформаційну базу моделі, водночас наділяє її особливими властивостями. Головна особливість статично-динамічної інформації — залежність спостережень. Залежними виявляються не лише рівні динамічних рядів, але й ряди в цілому ( і просторові, і часові), оскільки належність рівнів до того чи іншого ряду фіксована. Так, залежність між рядами динаміки — це результат просторової варіації, яка через інерційність процесів зберігається певний час. Залежність просторових рядів відбиває синхронність динаміки показників по окремих об'єктах, зумовлену спільними умовами розвитку. Ігнорування цих особливостей інформаційної бази моделювання призводить до помилкових висновків.
Особливості просторової варіації враховуються в моделі за допомогою структурних змінних окремих об'єктів
. Властивий усім об'єктам тренд функції у фільтрується за допомогою змінної часу t. Проте через нерівномірність розвитку окремих об'єктів сукупності поряд зі спільним трендом можуть виявитися істотними індивідуальні тренди. Для їх фільтрації можна використати змінні динамічної взаємодії: для факторів — , для об'єктів — . З урахуванням усіх цих особливостей регресійну модель для сукупності об'єкто-періодів можна записати так: .Параметри моделі вимірюють:
— чистий, елімінований від взаємозв'язків у межах моделі, ефект впливу фактора
;