Смекни!
smekni.com

Економічне прогнозування (стр. 12 из 15)

При неузгодженості думок експертів W = 0. Чим вищий ступінь узгодженості, тим більше значення W наближається до 1. За даними табл. 1.1, середня сума рангів становить 30:3 = 10, сума квадратів відхилень S - 32, а коефіцієнт конкордації

,

що свідчить про певні розбіжності в оцінках експертів щодо значущості варіантів.

Перевірка істотності коефіцієнта конкордації W здійснюється за допомогою критерію c2 з (m - 1)числом ступенів вільності (свободи). Статистична характеристика критерію розраховується за формулоюc2=Wn(m - 1). Для наведеного прикладу c2 = 0,64 * 5(3 - 1) = 6,4, що перевищує критичне значення c2(2) = 5,99 (див. додаток 2). Це дає підстави стверджувати з імовірністю 0,95, що значення W= 0,64 не випадкове і думки експертів узгоджені. При попарних порівняннях експерти використовують дві оцінки: 0 або 1. Більш вагомому варіанту надається оцінка 1, менш вагомому — 0. Результати попарних порівнянь оформляються у вигляді матриці, елементами якої є кількості наданих переваг aij. Діагональні елементи такої матриці представлені нулями. Одна із властивостей матриці aij + aji = n, де n — кількість експертів.


Таблиця 4.2

Варіант

А

В

C

Разом

wi

А

0

4

5

9

0,60

В

1

0

4

5

0,33

C

0

1

0

1

0,07

Разом

1

5

9

15

1,00

Відношення кількості наданих відповідному варіанту переваг до загальної суми елементів матриці характеризує його вагомість. За даними табл. 4.1, найвагомішим виявився варіант A, для якого w = 9 : 15 = 0,60.

Часто завданням експерта є не ранжування варіантів, а безпосереднє оцінювання рівнів певного явища чи окремих його властивостей, скажімо, якості продукції, конкурентоспроможності фірм тощо. У таких ситуаціях спершу визначається шкала (діапазон) оцінок, у межах якої експерт і оцінює явище (властивість) певним балом zij, де і — властивість, j— елемент сукупності.

Для певної множини m властивостей одного явища визначається середній бал Gj = S zij /m.

Ha таких методичних засадах ґрунтується більшість рейтингових систем. Так, всесвітньо відома рейтингова система CAMEL, якою користуються органи нагляду за банківською діяльністю, має п'ятибальну шкалу оцінок: від 1 (добре) до 5 (незадовільно). Для кожного банку оцінюється достатність капіталу, якість активів, ефективність менеджменту, прибутковість і ліквідність балансу. Середній бал Gjє рейтингом фінансового стану j-го банку. Від його значення залежить ступінь втручання органів банківського нагляду і комплекс заходів щодо усунення недоліків.

Якщо властивості z, не рівновагомі, то рейтинг визначається як середня арифметична зважена Gj = S zijw i , де w i — вага i-ой властивості. Саме так оцінюються комерційні, політичні ризики тощо. Наприклад, комерційний ризик, пов'язаний з інтернаціоналізацією банківської діяльності, оцінюється індексом Бері. Ознакова множина цього індексу включає 15 різновагомих показників, які характеризують політичну та економічну ситуацію в країні-партнерові. Зокрема, політична стабільність (вага 12 %), стан платіжного балансу (вага 6 %), темп економічного розвитку (вага 10 %), інші. Сума ваг становить 100 %.

Одним з популярних методів формування групової експертизи є метод Дельфи, назва якого походить від дельфійських мудреців, які славилися в давнину передбаченнями майбутнього. Основні принципи методу Дельфи: анонімність, регульованість зворотного зв'язку та узгодженість групової оцінки.

Автономне опитування експертів проводиться, як правило, в чотири тури. Кожного разу експерт виражає свою думку певною оцінкою в межах визначеної шкали. Результати опитування групи експертів упорядковуються; на основі упорядкованого ряду визначається медіана Me й квартилі оцінок — нижній Q1і верхній Q3 - Медіана розглядається як узагальнююча групова оцінка процесу; для характеристики варіації оцінок використовують інтерквартильний розмах R = Q3 - Q1 .

Значення медіани і розмаху повідомляють усім експертам. Тим з них, чиї оцінки виявилися за межами діапазону (Q3 - Q1 ) , пропонують аргументувати свої висновки, аби ознайомити з ними решту експертів. Такий зворотний зв'язок відсікає «шуми», зменшує вплив індивідуальних і групових інтересів, не пов'язаних з проблемою.

Ітераційна процедура упорядкування та узагальнення експертних оцінок дає можливість зблизити точки зору експертів, що робить групові оцінки надійнішими за просте усереднення. Проте сама по собі процедура опитування не розв'язує всіх проблем точності прогнозів. Вирішальну роль відіграють компетентність експертів і досконалість програми опитування.

5. Оцінювання якості прогнозів

Забезпечення адекватності регресійної моделі

Адекватність регресійної моделі означає здатність її правильно описати реальну структуру взаємозв'язків між ознаками

та y. Методологічною основою вирішення проблеми адекватності є теоретичний, змістовний аналіз матеріальної природи процесу (явища) та обґрунтування типу й структури моделі, яка описує механізм його формування. Практично з метою забезпечення адекватності моделі змістовний аналіз поєднується з формальними процедурами перевірки гіпотез щодо дотримання логіко-статистичних умов використання МНК.

Мірою адекватності моделі слугують відхилення фактичних значень від теоретичних

. На величину цих відхилень впливає весь комплекс умов, зокрема:

- обсяг та однорідність сукупності;

- незалежність спостережень;

- інформативність включених у модель факторів;

- стабільність не включених у модель факторів;

- тип моделі.

Репрезентативність оцінок регресійного аналізу прямо пропорційна обсягу та однорідності сукупності. Саме недостатній обсяг сукупності та її неоднорідність вважаються найвагомішими чинниками неадекватності моделей. Тому при формуванні ознакової множини моделі слід враховувати співвідношення між обсягом вибірки і кількістю включених у модель факторів (воно має бути приблизно 8:1).

Оцінювання однорідності сукупності здійснюється на етапі розвідувального аналізу даних. Так, наявність аномальних значень, які не узгоджуються з розподілом основної маси даних, може бути наслідком помилок спостереження або результатом незвичайної комбінації причин і умов, у яких функціонує одиниця сукупності. Ідентифікація таких спостережень дає можливість Усунути помилки, а якщо це неможливо, то вилучити аномальний об'єкт з подальшого аналізу. Якщо сукупність розшарована на групи (кластери), то в моделі можна врахувати таку неоднорідність.

Інформативність включених у модель факторних ознак залежить як від соціально-економічного змісту, так і від шкали вимірювання ознаки. Якщо ознака за змістом не інформативна, то ніякий спосіб моделювання не забезпечить належних результатів. Так само результати аналізу будуть суттєво різнитися залежно від того, якою шкалою представлено одну й ту саму ознаку (метричною, ранговою чи номінальною).

Ті властивості, що безпосередньо не вимірюються або не мають єдиного вимірника, включаються в модель у вигляді інтегральних оцінок. Наприклад, погодні умови характеризуються середньодобовою температурою повітря, кількістю опадів, тривалістю сонячного світла, хмарністю і т. ін. Усі ці характеристики агрегуються в індексі погодних умов.

Важливою умовою регресійного аналізу є відсутність мультиколінеарності, яка веде до зсунення оцінок параметрів моделі та унеможливлює коректну інтерпретацію результатів. Два фактори вважаються колінеарними, якщо коефіцієнт кореляції між ними перевищує сукупний коефіцієнт кореляції, тобто

. Найпростіший спосіб усунення мультиколінеарності — виключити одну із корельованих ознак із моделі або замінити її іншою. Часом колінеарні фактори агрегуються в одну узагальнюючу оцінку.

Стабільність не включених у модель факторів означає, що вплив їх на варіацію у незначний і врівноважується, він однаковий в усіх частинах сукупності. Математичною основою дотримання цих передумов МНК слугує імовірнісний розподіл залишків

. Передбачається, що:

- для кожного спостереження залишок

випадкова величина, яка має нормальний розподіл. Умова нормальності необхідна для визначення довірчих меж коефіцієнтів регресії і для перевірки гіпотез щодо їх істотності;

- математичне сподівання залишків М(е) = 0;

- дисперсія залишків однакова в усіх частинах сукупності:

. Ця умова пов'язана з однорідністю сукупності;