X'ХВ = у,
де
X — матриця розміром п (т + 1).Послідовність розрахунків включає етапи:
- обчислення матриці
X і вектора у- обертання матриці С = ;
- розрахунок параметрів
;- визначення теоретичних значень результативної ознаки
та залишків .Значення коефіцієнтів регресії певною мірою залежать від складу введених у модель факторів.
З розширенням ознакової множини моделі відбувається перерозподіл впливу попередньо введених факторів. Чим вагоміший вплив нововведеного фактора, тим помітніші зміни. Ілюстрацією перерозподілу впливу факторів може слугувати регресійна модель урожайності рису, ц/га [11]. У модель послідовно вводились агротехнічні фактори:
— попередник, балів; — внесення добрив під основний обробіток, центнерів поживної речовини (ц п. р.) на 1 га посіву; — передпосівний обробіток, та м'якої оранки; — підживлення, ц п. р.; — норма висіву; — кількість прополювань. Відповідно отримано такі рівняння регресії:1. Y=30,432 + 3,001
;2. Y= 26,208 + 2,049
+ 5,995 ;3. Y= 21,563 + 1,970
+ 4,610 + 2,906 ;4. Y= 22,332 + 1,321
+ 4,558 + 1,465 + 9,791 ;5. Y= 18,960 + 1,342
+ 4,483 + 1,347 + 9,545 + 1,756 ;6. Y= 19,387+ 0,965
, + 3,400 + 0,501 + 7,500 + 1,73 + 3,433 .Як бачимо, введення кожного нового фактора спричиняє зменшення впливу попередньо введених факторів, таку ж тенденції має й вільний член рівняння.
Оскільки факторні ознаки мають, як правило, різні одиниці вимірювання, то для порівняння ефектів їх впливу в рамках моделі використовують стандартизовані коефіцієнти регресії
(бета-коефіцієнти) або коефіцієнти еластичності - . Бета-коефіцієнт характеризує ефект впливу на у в середньоквадратичних відхиленнях, коефіцієнт еластичності — в процентах. У табл. 5.2 наведено бета-коефіцієнти останнього (шостого) варіанта моделі врожайності рису. Згідно із значеннями Р, найвагоміший вплив на врожайність рису мають: прополювання ( = 0,360), підживлення = 0,264), внесення добрив під основний обробіток ( = 0,248).Для оцінювання адекватності регресійної моделі використовують:
- стандартне відхилення;
- множинні коефіцієнти детермінації та кореляції;
- частинні коефіцієнти детермінації та кореляції;
- коефіцієнти окремої детермінації;
- критерії перевірки істотності зв'язку.
Стандартне відхилення характеризує варіацію залишкових величин
,де n — обсяг сукупності, т — кількість коефіцієнтів регресії.
Розрахунок характеристик щільності зв'язку ґрунтується на декомпозиції (розкладанні) варіації у за джерелами формування:
,де
— загальна сума квадратів відхилень, зумовлена впливом усіх можливих факторів; — факторна сума квадратів відхилень, зумовлена впливом включених у модель факторних ознак ; — залишкова сума квадратів відхилень, розмір якої залежить від потужності впливу не включених у модель факторів.Відношення факторної суми квадратів до загальної характеризує частку варіації у, пов'язану з варіацією включених у модель факторів, і називається множинним коефіцієнтом детермінації
.За відсутності зв'язку
= 0. Якщо зв'язок функціональний, то = 1. Очевидно, що пов'язаний із стандартним відхиленням . При зменшенні значення зростатиме і навпаки. Корінь квадратний із коефіцієнта детермінації називають коефіцієнтом кореляції . Для моделі врожайності рису R = 0,8394, = 0,7029, тобто 70,29% варіації врожайності рису лінійно пов'язані з агротехнічними факторами, включеними в модель.Окрім названих множинних коефіцієнтів щільності зв'язку, в комп'ютерних програмах передбачено розрахунок
з урахуванням числа ступенів вільності: ,де
— оцінка дисперсії результативної ознаки у; — оцінка залишкової дисперсії.Скоригований коефіцієнт множинної детермінації відрізняється від
співвідношенням числа ступенів вільності дисперсій: залишкової і загальної . Для розглянутої моделі це співвідношення становить (34-1) : (34-6-1) = 1,2222, а = 1-(1-0,7029) • 1,2222 = 0,6369.У моделях множинної регресії поряд з оцінкою сукупного впливу всіх включених у модель факторів вимірюється кореляція між функцією у та кожним окремим фактором
, при елімінуванні впливу інших факторів. Для цього використовують частинні коефіцієнти детермінації . Схему розрахунку розглянемо на прикладі фактора моделі врожайності рису. До введення його в модель п'ять факторів пояснювали 64,61% варіації врожайності ( = 0,6461), не поясненими залишалися (1 - 0,6461) • 100 = 35,39% варіації. Фактор додатково пояснив 0,7029 — 0,6461 =0,0568 варіації у, що відносно не поясненої іншими факторами варіації становить 0,0568:0,3539 = 0,1605. Це і є частинним коефіцієнтом детермінації фактора .