Отже, розрахунок ґрунтується на порівнянні двох регресійних моделей: повної, з урахуванням фактора
і скороченої, у якій фактор відсутній. Чисельник дорівнює різниці сукупних коефіцієнтів детермінації цих моделей, знаменник — одиниці мінус сукупний коефіцієнт детермінації скороченої моделі. Загальну схему його розрахунку можна представити як відношення сум квадратів: частинної і залишкової : ,де
; — діагональний елемент оберненої матриці.Корінь квадратний із частинного коефіцієнта детермінації називають частинним коефіцієнтом кореляції.
Іноді для характеристики ролі кожного фактора у відтворенні варіації у сукупний коефіцієнт детермінації розкладають на складові:
,де
— коефіцієнт окремої детермінації, який залежить від потужності впливу і-го фактора на y та щільності зв'язку між ними ( — парний коефіцієнт кореляції).Ефекти впливу факторів на врожайність рису та характеристики щільності зв'язку наведено в табл. 2.3.
Таблиця 2.3
Фактор | |||||
0,597 | 0,965 | 0,192 | 0,1146 | 0,0727 | |
0,614 | 3,400 | 0,248 | 0,1521 | 0,1160 | |
0,489 | 0,501 | 0,045 | 0,0221 | 0,0039 | |
0,638 | 7,500 | 0,264 | 0,1687 | 0,1168 | |
0,411 | 1,730 | 0,029 | 0,0119 | 0,0020 | |
0,716 | 3,443 | 0,362 | 0,2335 | 0,1605 |
У таблиці для кожного фактора наведено три характеристики спільності зв'язку: парний коефіцієнт
, частинний і коефіцієнт окремої детермінації . Найбільші значення мають парні коефіцієнти кореляції. Це пояснюється тим, що фактори взаємозалежні, і парний коефіцієнт кореляції акумулює вплив інших факторів. Частинні коефіцієнти характеризують відносну зміну залишкової дисперсії за рахунок відповідного фактора; для кожного з них база порівняння інша, а тому аналітичні можливості їх обмежені. Коефіцієнти окремої детермінації, сума яких дорівнює множинному коефіцієнту детермінації = 0,7029, упорядковуючи фактори за потужністю впливу, практично дублюють висновки, які можна зробити на основі бета-коефіцієнтів.Перевірка істотності зв'язку статистичне формулюється як перевірка нульових гіпотез:
; . Гіпотеза відхиляється чи визнається допустимою на основі статистичних критеріїв, зокрема дисперсійного F-критерію, статистична характеристика якого розраховується відношенням оцінок факторної і залишкової дисперсій: або .Критичні значення
, де — рівень істотності, , — числа ступенів вільності чисельника та знаменника, наведено в додатку 10. Оскільки F-критерій функціонально зв'язаний з коефіцієнтом детермінації , то перевірку істотності зв'язку можна здійснити, використовуючи безпосередньо критичні значення , наведені в додатку 11.Паралельно з оцінюванням адекватності моделі проводиться перевірка істотності впливу окремих факторів , на у за допомогою t-критерію:
,де
— стандартна похибка коефіцієнта регресії; —оцінка залишкової дисперсії; — діагональний елемент оберненої матриці С.Критичні значення
, де наведено в додатку 5. Ефект впливу і-го фактора визнається істотним, якщо . Так, при = 0,05 і = 20 коефіцієнт в 2,15 раза перевищує стандартну похибку , що свідчить про його значущість (істотність).Довірчі межі ефекту впливу визначаються за правилами вибіркового методу
, де — значення двостороннього t-критерію.Рівняння регресії має такий вигляд:
.Із збільшенням цукристості буряка на 1%, за умови незмінності інших факторів, вихід цукру з 1 т сировини зростає в середньому на 0,953%; щодо порушень технології зберігання та переробки сировини, то вони мають негативний вплив, особливо порушення технології зберігання. Включені в модель фактори пояснюють 84,5% варіації виходу цукру з 1 т сировини; ефекти впливу усіх факторів істотні.