Смекни!
smekni.com

Линейная регрессия (стр. 2 из 5)

4) Вычислим F- распределения.

Fнабл=S/S =1,653.


5) Произведем сравнение Fнабл и Fтабл.

1,653<5,32 (при k1=1 и k2=n–2=10–2=8), следовательно, гетероскедастичность места не имеет, т.е. дисперсия остатков гомоскедастична.

· Отсутствие автокорреляции.

Отсутствие автокорреляции проверяется по d-критерию Дарбина - Уотсона:

Таблица 4

εi εi-1 εi- εi-1 i- εi-1)2
1 1,284
2 -1,521 1,284 -2,805 7,868
3 2,611 -1,521 4,132 17,073
4 1,894 2,611 -0,717 0,5141
5 0,089 1,894 -1,805 3,258
6 -1,760 0,089 -1,849 3,4188
7 -2,433 -1,760 -0,673 0,4529
8 -2,106 -2,433 0,327 0,1069
9 3,001 -2,106 5,107 26,081
10 -1,062 3,001 -4,063 16,508
Сумма 75,282

; d=75,282/37,961=1,983.

Так как d-критерий меньше двух, то мы наблюдаем присутствие положительной автокорреляции.

· Остатки подчиняются нормальному закону распределения.

4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента


;
,

;
,

где

Тогда

,
;
и

tтабл=2,3060 (при 10-2=8 степенях свободы); tа и tb> tтабл, что говорит о значимости параметров модели.

5. Коэффициент детерминации находится по формуле:

.

Данные возьмем из таблицы 5:

Таблица 5

x y
1 17 26 3,7 4,1 13,69 16,81 1,284 4,938
2 22 27 8,7 5,1 75,69 26,01 -1,521 5,633
3 10 22 -3,3 0,1 10,89 0,01 2,611 11,868
4 7 19 -6,3 -2,9 39,69 8,41 1,894 9,968
5 12 21 -1,3 -0,9 1,69 0,81 0,089 0,424
6 21 26 7,7 4,1 59,29 16,81 -1,760 6,769
7 14 20 0,7 -1,9 0,49 3,61 -2,433 12,165
8 7 15 -6,3 -6,9 39,69 47,61 -2,106 14,040
9 20 30 6,7 8,1 44,89 65,61 3,001 10,003
10 3 13 -10,3 -8,9 106,09 79,21 -1,062 8,169
Сумма 133 219 392,1 264,9 83,979
Ср. знач. 13,3 21,9

Для проверки значимости модели используем F-критерий Фишера:

.

Fтабл=5,32 (k1=1, k2=8 степенями свободы) ;

F>Fтабл, что говорит о значимости уравнения регрессии.

Среднюю относительную ошибку аппроксимации находим по формуле:

;

В среднем расчетные значения отклоняются от фактических на 8,4%.

Поскольку найденная средняя относительная ошибка аппроксимации находится в интервале от 5 до 10, то можно утверждать, что модель имеет хорошее качество.

6. Ширина доверительного интервала находится по формулам:

где tα=1,86 при m=n-2=8 и α=0,1

Т.о.

Верхн. граница: 25,173+4,34=29,513

Нижн. граница: 25,173-4,34=20,833

Таблица 6

Нижняя граница Прогноз Верхняя граница
20,83 25,17 29,51

7. Фактические и модельные значения Y, точки прогноза представлены на графике 2.

График 2

8. Составить уравнения нелинейной регрессии:

· Гиперболической

Уравнение показательной кривой имеет вид: ŷ = a + b/x.

Произведем линеаризацию модели путем замены Х = 1/х.

Тогда уравнение примет вид: ŷ = a + bХ- линейное уравнение регрессии.

Данные, необходимые для нахождения параметров приведены в таблице 6

Таблица 7

y x X X2 Xy ŷ εi εi2
1 26 17 0,0588 0,0035 1,5294 24,41 1,59 2,52 6,11
2 27 22 0,0455 0,0021 1,2273 25,10 1,90 3,61 7,04
3 22 10 0,1000 0,0100 2,2000 22,29 -0,29 0,09 1,33
4 19 7 0,1429 0,0204 2,7143 20,09 -1,09 1,18 5,72
5 21 12 0,0833 0,0069 1,7500 23,15 -2,15 4,63 10,24
6 26 21 0,0476 0,0023 1,2381 24,99 1,01 1,02 3,89
7 20 14 0,0714 0,0051 1,4286 23,76 -3,76 14,16 18,82
8 15 7 0,1429 0,0204 2,1429 20,09 -5,09 25,88 33,91
9 30 20 0,0500 0,0025 1,5000 24,87 5,13 26,35 17,11
10 13 3 0,3333 0,1111 4,3333 10,28 2,72 7,38 20,90
Сумма 219 133 1,0757 0,1843 20,0638 86,82 125,07
Ср.знач. 21,9 13,3 0,1076 0,0184 2,0064

Значение параметров а и b линейной модели определим по формулам:

Уравнение регрессии будет иметь вид ŷ = 27,44 – 51,47 X.

Перейдем к исходным переменным, получим уравнение гиперболической модели:

.

График 3


Степенная

Уравнение степенной модели имеет вид: ŷ = a · xb

Для построения этой модели необходимо произвести линеаризацию переменных. Для этого произведем логарифмирование обеих частей уравнения:

lg ŷ = lg a + b lg x

Обозначим Y = lg ŷ; A = lg a; X = lg x

Тогда уравнение примет вид: Y = A + bX - линейное уравнение регрессии.

Рассчитаем его параметры, используя данные таблицы 8:

Таблица 8

y x Y X YX X2 ŷ εi εi2
26 17 1,4150 1,2304 1,7411 1,5140 24,545 1,45 2,12 5,60
27 22 1,4314 1,3424 1,9215 1,8021 27,142 -0,14 0,02 0,52
22 10 1,3424 1,0000 1,3424 1,0000 19,957 2,04 4,17 9,29
19 7 1,2788 0,8451 1,0807 0,7142 17,365 1,63 2,67 8,60
21 12 1,3222 1,0792 1,4269 1,1646 21,427 -0,43 0,18 2,04
26 21 1,4150 1,3222 1,8709 1,7483 26,654 -0,65 0,43 2,51
20 14 1,3010 1,1461 1,4911 1,3136 22,755 -2,76 7,59 13,78
15 7 1,1761 0,8451 0,9939 0,7142 17,365 -2,37 5,59 15,77
30 20 1,4771 1,3010 1,9218 1,6927 26,151 3,85 14,81 12,83
13 3 1,1139 0,4771 0,5315 0,2276 12,479 0,52 0,27 4,01
Сумма 219 133 13,2729 10,5887 14,3218 11,8913 37,86 74,94
Ср.знач. 21,9 13,3 1,3273 1,0589 1,4322 1,1891

Значение параметров А и b линейной модели определим по формулам: