Смекни!
smekni.com

Линейная регрессия (стр. 5 из 5)

Для упрощения расчетов удобнее работать с отклонениями от средних уровней:

∆у = у - уср; ∆х = х - хср

Таблица 10

n ∆y1 ∆y2 ∆x1 ∆x2 ∆y1∆x1 ∆x12 ∆x1∆x2 ∆y1∆x2 ∆y2∆x1 ∆y2∆x2 ∆x22
1 -21,9 -11,6 -2,7 3,3 58,31 7,11 -8,89 -72,89 30,89 -38,61 11,11
2 39,2 26,9 4,3 6,3 170,0 18,78 27,44 248,48 116,64 170,47 40,11
3 -5,7 -5,8 -0,7 -3,7 3,78 0,44 2,44 20,78 3,86 21,21 13,44
4 -21,8 -13,3 -2,7 0,3 58,04 7,11 -0,89 -7,26 35,42 -4,43 0,11
5 26,1 15,1 3,3 -0,7 87,11 11,11 -2,22 -17,42 50,39 -10,08 0,44
6 -16,1 -11,4 -1,7 -5,7 26,78 2,78 9,44 91,04 18,97 64,51 32,11
-0,2 -0,1 -0,2 -0,2 404,03 47,33 27,33 262,73 256,17 203,07 97,33

С учетом приведенных данных получим:

404,03 = 47,33δ11 + 27,33δ12

262,73 = 27,33δ11 + 97,33δ12

δ12 = 0,36;

С учетом этого первое уравнение ПФМ примет вид:

y1 = 8,33х1 + 0,36х2 + u1

Для второго уравнения определим δ – коэффициент с помощью МНК:

Для дальнейших расчетов данные берем из таблицы 9, 10. Получим:

256,17=47,33δ21+27,33δ22

203,07=27,33δ21+97,33δ22

δ22 = 0,68;

Второе уравнение ПФМ примет вид:

у2 = 5,02х1 + 0,68х2 + u2

3) Выполним переход от ПФМ к СПФМ. Для этого из последнего уравнения найдем х2:

Найденное х2 подставим в первое уравнение.

,

тогда b12=0,53; a11=5,67

Из первого уравнения ПФМ найдем х1

Подставим во второе уравнение ПФМ

,

тогда b21=0,6; a22=0,46

4) Свободные члены СФМ найдем из уравнения:


а01 = у1ср - b12у2ср - а11х1ср = 73,17 – 0,53 50,98 - 5,67 5,67 = 14,00;

а02 = у2ср - b21у1ср - а22х2ср = 50,98 - 0,6 73,17 - 0,46 6,67 = 4,00.

5) Записываем СФМ в окончательном виде:

y1=a01 + b12y2 + a11x1 + ε1;

y2=a02 + b21y1 + a22x2 + ε2.

y1 =14 + 0,53y2 + 5,67x1 + ε1;

y2 = 4 + 0,6y1 + 0,46x2 + ε2.