Смекни!
smekni.com

Метод наименьших квадратов для однофакторной линейной регрессии (стр. 1 из 3)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ

КОНТРОЛЬНАЯ РАБОТА

ПО ДИСЦИПЛИНЕ

«ЭКОНОМЕТРИКА»

2007


Задания к контрольной работе:

1. Метод наименьших квадратов для однофакторной линейной регрессии

2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ.

Модель: Y = (2/X) + 5; X = 0;

3. Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:

№ района Фактор Уровень убыточности, %
Сбор овощей с 1 га, ц Затраты труда, человеко-часов на 1 ц
1 93,2 2,3 8,8
2 65,9 26,8 39,4
3 44,6 22,8 26,2
4 18,7 56,6 78,8
5 64,6 16,4 34
6 25,6 26,5 47,6
7 47,2 26 43,7
8 48,2 12,4 23,6
9 64,1 10 19,9
10 30,3 41,7 50
11 28,4 47,9 63,1
12 47,8 32,4 44,2
13 101,3 20,2 11,2
14 31,4 39,6 52,8
15 67,6 18,4 20,2

Нелинейную зависимость принять


1. Метод наименьших квадратов для однофакторной линейной регрессии

Линейная регрессия находит широкое применение в эконометрике в виде четкой эконометрической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида:

Ŷ = а + bx или Ŷ = a + bx + ε;

Уравнение вида Ŷ = а + bx позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора X. На графике теоретические значения представляют линию регрессии.


Рисунок 1 – Графическая оценка параметров линейной регрессии

Построение линейной регрессии сводится к оценке ее параметров – а и b. Оценки параметров линейной регрессии могут быть найдены разными методами. Можно обратится к полю корреляции и, выбрав на графике две точки, провести через них прямую линию. Далее по графику можно определить значения параметров. Параметр a определим как точку пересечения линии регрессии с осью OY, а параметр b оценим, исходя из угла наклона линии регрессии, как dy/dx, где dy – приращение результата y, а dx – приращение фактора x, т.е. Ŷ = а + bx.

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов(МНК).

МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака (y) от расчетных (теоретических) минимальна:

∑(Yi – Ŷ xi)2 → min

Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной.

εi = Yi – Ŷ xi.

следовательно ∑εi2 → min


Рисунок 2 – Линия регрессии с минимальной дисперсией остатков

Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю.

Обозначим ∑εi2 через S, тогда


S = ∑ (Y –Ŷ xi)2 =∑(Y-a-bx)2;

Дифференцируем данное выражение, решаем систему нормальных уравнений, получаем следующую формулу расчета оценки параметра b:

b = (ух – у•x)/(x2-x2).

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Например, если в функции издержек Ŷ = 3000 + 2x (где x – количество единиц продукции, у – издержки, тыс. грн.) с увеличением объема продукции на 1 ед. издержки производства возрастают в среднем на 2 тыс. грн., т.е. дополнительный прирост продукции на ед. потребует увеличения затрат в среднем на 2 тыс. грн.

Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследованиях.

2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ.

Модель: Y = (2/X) + 5; X = 0;

Известно, что коэффициент эластичности показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%. Формула расчета коэффициента эластичности:

Э = f′(x) X/Y,

где f′(x) – первая производная, характеризующая соотношение прироста результата и фактора для соответствующей формы связи.


Y = (2/X) + 5,

f′(x) = -2/x2;

Следовательно получим следующее математическое выражение


Э = =

При заданном значении X = 0 получим, что коэффициент эластичности равен Э = -1.

Допустим, что заданная функция Y = (2/X) + 5 определяет зависимость спроса от цены. В этом случае с ростом цены на 1% спрос снижается в среднем на 1%.

3. Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:

№ района Фактор Уровень убыточности, %
Сбор овощей с 1 га, ц Затраты труда, человеко-часов на 1 ц
1 93,2 2,3 8,8
2 65,9 26,8 39,4
3 44,6 22,8 26,2
4 18,7 56,6 78,8
5 64,6 16,4 34
6 25,6 26,5 47,6
7 47,2 26 43,7
8 48,2 12,4 23,6
9 64,1 10 19,9
10 30,3 41,7 50
11 28,4 47,9 63,1
12 47,8 32,4 44,2
13 101,3 20,2 11,2
14 31,4 39,6 52,8
15 67,6 18,4 20,2

Нелинейную зависимость принять

Задание №1

Построим линейную зависимость показателя от первого фактора.

Обозначим: сбор овощей с 1 Га как X1, а уровень убыточности как Y.

Сбор овощей с 1 га, ц Уровень убыточности, %
X1 Y
93,2 8,8
65,9 39,4
44,6 26,2
18,7 78,8
64,6 34
25,6 47,6
47,2 43,7
48,2 23,6
64,1 19,9
30,3 50
28,4 63,1
47,8 44,2
101,3 11,2
31,4 52,8
67,6 20,2

Найдем основные числовые характеристики.

1. Объем выборки n = 15 – суммарное число наблюдений.

2. Минимальное значение величины сбора овощей Х=18,7;

Максимальное значение сбора овощей Х=101,3;

Минимальное значение величины уровня убыточности Y=8,8;

Максимальное значение величины уровня убыточности Y=78,8;

3.

Среднее значение:

X = ∑xi.

Среднее значение величины сбора овощей X = 778,9/15 = 51,926.

Среднее значение величины уровня убыточности Y = 563,5/15 = 37,566.

4. Дисперсия


D(X) = ∑ (Xi – X)2 = 588.35 D(Y) = ∑(Yi – Y)2 = 385,57.

5. Среднеквадратическое отклонение:

σx=√588.35 = 24.25, значит среднее сбора овощей в среднем от среднего значения составляет 24,25%.

σy=√385.17 = 19.63, значит среднее уровня убыточности всей сельскохозяйственной продукции в среднем от среднего значения составляет 19,63%.

Для начала нужно определить, связаны ли X1 и Y между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания). Точка с координатами (X, Y) = (51,926; 37,566) называется центром рассеяния. По виде корреляционного поля можно предположить, что зависимость между X1 и Y линейная (стр.). Для определения тесноты линейной связи найдем коэффициент корреляции: