Среднегодовой темп роста | ||
с 1990 по 1996 | 98,30 | |
с 1995 по 1999 | 94,63 | |
с 1990 по 1999 | 96,94 | |
Среднегодовой темп прироста | ||
с 1990 по 1996 | -1,70 | |
с 1995 по 1999 | -5,37 | |
с 1990 по 1999 | -3,06 |
Реализация товаров на колхозном рынке характеризуется данными представленными в табл.5.
Таблица 5.
Наименование товара | Базисный период | Отчетный период | ||
Количество, тыс. кг. | Цена 1 кг., грн | Количество, тыс. грн. | Цена 1 кг., грн | |
Картофель | 15,0 | 0,3 | 20 | 0,5 |
Мясо | 3,0 | 3,5 | 4 | 5 |
Определите:
1) общий индекс физического объема продукции;
2) общий индекс цен и абсолютный размер экономии (перерасхода) от изменения цен;
3) на основании исчисленных индексов определить индекс товарооборота.
Решение.
Индекс представляет собой относительную величину, получаемую в результате сопоставления уровней сложных социально-экономических показателей во времени, в пространстве или с планом.
Индивидуальными называются индексы, характеризующие изменения только одного элемента совокупности.
Общий индекс отражает изменение по всей совокупности элементов сложного явления.
Стоимость - это качественный показатель.
Физический объем продукции - количественный показатель.
Общий индекс физического объема продукции вычисляется по формуле:
,где p0 и р1 - цена единицы товара соответственно в базисном и отчетном периодах;
q0 и q1 - количество (физический объем) товара соответственно в базисном и отчетном периодах.
Количество проданных товаров увеличилось на 33,3%.
Или в деньгах: 20 - 15 = 5,0 тыс. грн.
Общий индекс стоимости вычисляется по формуле:
Следовательно, цены на данные товары в среднем увеличились на 50%.
Сумма сэкономленных или перерасходованных денег:
сумма возросла на 50%, следовательно, население в отчетном периоде на покупку данных товаров дополнительно израсходует: 30 - 20 = 10 тыс. грн.
Общий индекс товарооборота вычисляется по формуле:
Товарооборот в среднем возрос на 100%.
Взаимосвязь индексов:
1,333 * 1,5 = 2,0
Имеются данные о выпуске одноименной продукции и её себестоимости по двум заводам
Завод | Производство продукции, тыс. шт. | Себестоимость 1 шт., грн. | ||
I квартал | II квартал | I квартал | II квартал | |
I | 100 | 180 | 100 | 96 |
II | 60 | 90 | 90 | 80 |
Вычислите индексы:
1) себестоимости переменного состава;
2) себестоимости постоянного состава;
3) структурных сдвигов. Поясните полученные результаты.
Решение.
Индекс себестоимости переменного состава вычисляется по формуле:
где z0и z1 - себестоимость единицы продукции соответственно базисного и отчетного периодов;
q0 и q1 - количество (физический объем) продукции соответственно в базисном и отчетном периодах.
Индекс показывает, что средняя себестоимость по двум заводам повысилась на 71,6%, это повышение обусловлено изменением себестоимости продукции по каждому заводу и изменением структуры продукции (увеличением объема выпуска).
Выявим влияние каждого из этих факторов.
Индекс себестоимости постоянного состава вычисляется по формуле:
То есть себестоимость продукции по двум заводам в среднем возросла на 70%.
Индекс себестоимости структурных сдвигов вычисляется по формуле:
Или
Взаимосвязь индексов:
170*100,9=171,6
Вывод:
Индекс себестоимости переменного состава зависит от изменения уровня себестоимости и от изменения объема производства, т.е. средний прирост себестоимости составил 71,6%.
Индекс себестоимости постоянного состава показывает изменение себестоимости при фиксированном объеме производства, т.е. в среднем по заводам себестоимость повысилась на 71%. Индекс себестоимости переменного состава выше, чем индекс себестоимости постоянного состава, это свидетельствует о том, что произошли благоприятные структурные сдвиги. Индекс структурных сдвигов равен 1,009%, т.е. за счет изменения объемов производства по заводам средняя себестоимость повысилась на 0,9%.
Для изучения тесноты связи между выпуском валовой продукции на один завод (результативный признак Y) и оснащенностью заводов основными производственными фондами (факторный признак X) по данным задачи 1 вычислить коэффициент детерминации и эмпирическое корреляционное отношение.
Решение.
Показателем тесноты связи между факторами, является линейный коэффициент корреляции.
Линейный коэффициент корреляции вычислим по формуле:
.Линейное уравнение регрессии имеет вид: y=bx-а.
Коэффициент детерминации показывает насколько вариация признака зависит от фактора, положенного в основу группировки и вычисляется по формуле:
где d2 - внутригрупповая дисперсия;
s2 - общая дисперсия.
Общая дисперсия характеризует вариацию признака, который зависит от всех условий в данной совокупности.
Межгрупповая дисперсия отражает вариацию изучаемого признака, которая возникает под влиянием фактора, положенного в основу группировки и рассчитывается по формуле:
где
среднее значение по отдельным группам;fi - частота каждой группы.
Средняя из внутригрупповых дисперсия:
где
- дисперсия каждой группы.Эмпирическое корреляционное отношение рассчитывается по формуле:
Все расчетные данные приведены в таблице 7.
Таблица 7
№ завода | Среднегодовая стоимость ОФ, млн. грн. (X) | Валовая продукция в сопоставимых ценах, грн. (Y) | X^2 | Y^2 | XY |
1 | 1,6 | 1,5 | 2,56 | 2,25 | 2,55 |
2 | 3,9 | 4,2 | 15,21 | 17,64 | 17,16 |
3 | 3,3 | 4,5 | 10,89 | 20,25 | 15,75 |
4 | 4,9 | 4,4 | 24,01 | 19,36 | 22,05 |
5 | 3,0 | 2,0 | 9 | 4 | 6,4 |
6 | 5,1 | 4,2 | 26,01 | 17,64 | 22,44 |
7 | 3,1 | 4,0 | 9,61 | 16 | 13,2 |
8 | 0,5 | 0,4 | 0,25 | 0,16 | 0,1 |
9 | 3,1 | 3,6 | 9,61 | 12,96 | 11,52 |
10 | 5,6 | 7,9 | 31,36 | 62,41 | 43,68 |
11 | 3,5 | 3,0 | 12,25 | 9 | 10,8 |
12 | 0,9 | 0,6 | 0,81 | 0,36 | 0,63 |
13 | 1,0 | 1,1 | 1 | 1,21 | 1,32 |
14 | 7,0 | 7,5 | 49 | 56,25 | 53,9 |
15 | 4,5 | 5,6 | 20,25 | 31,36 | 25,76 |
16 | 8,1 | 7,6 | 65,61 | 57,76 | 63,18 |
17 | 6,3 | 6,0 | 39,69 | 36 | 38,4 |
18 | 5,5 | 8,4 | 30,25 | 70,56 | 46,75 |
19 | 6,6 | 6,5 | 43,56 | 42,25 | 43,55 |
20 | 1,0 | 0,9 | 1 | 0,81 | 0,8 |
21 | 4,7 | 4,5 | 22,09 | 20,25 | 21,6 |
22 | 2,7 | 2,3 | 7,29 | 5,29 | 6,75 |
23 | 2,9 | 3,2 | 8,41 | 10,24 | 8,96 |
24 | 6,8 | 6,9 | 46,24 | 47,61 | 46,24 |
Итого | 95,6 | 100,8 | 485,96 | 561,62 | 523,49 |
Среднее | 3,824 | 4,032 | 19,4384 | 22,4648 | 21,81 |
Подставив вычисленные значения в формулу, получим:
Коэффициент детерминации h2 = 0,87.
Эмпирическое корреляционное отношение имеет вид: у = 1,0873х - 0,161.
Линейный коэффициент корреляции r = 0,93.
a=0,161b=1,0873
Так как значение коэффициента корреляции близко к единице, то между выпуском валовой продукции и оснащенностью заводов основными производственными фондами есть тесная зависимость.
b - коэффициент регрессии, т.к b > 0, то связь прямая.
1. 1. Адамов В.Е. Факторный индексный анализ. - М.: Статистика, 1997.
2. 2. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник. - М.: Финансы и статистика, 2004.
3. 3. Ефимова М.Р., Рябцев В.Ф. Общая теория статистики: Учебник. М.: Финансы и статистика, 1999.