Смекни!
smekni.com

Расчет показателей вариации (стр. 2 из 2)

Стандартное отклонение, среднее квадратическое отклонение (от английского standard deviation) вычисляется как корень квадратный из дисперсии. Чем выше дисперсия или стандартное отклонение, тем сильнее разбросаны значения переменной относительно среднего.

Дисперсия показывает, как сильно фактические значения колеблются вокруг среднего значения. Дисперсия вычисляется как сумма квадратов отклонений фактических значений от средней, взвешенных на число регионов данной группы.

В столбце 6 строятся сами квадраты отклонений, а в столбце 8 – взвешенные квадраты отклонений. Делением суммы взвешенных квадратов отклонений на количество регионов получаем саму дисперсию: 7,6748/69=0,111.

Корень из дисперсии тоже является одним из абсолютных показателей вариации – среднее квадратическое отклонение или СКО = 0,333.

Для вычисления асимметрии используются столбец 7 и столбец 9. Асимметрия показывает насколько фактический ряд распределения смещен в сторону своих больших или малых значений относительно распределения по нормальному закону.

Ассиметрия – это свойство распределения выборки, которое характеризует несимметричность распределения СВ. На практике симметричные распределения встречаются редко и чтобы выявить и оценить степень асимметрии, вводят следующую меру:

Асимметрия бывает положительной и отрицательной. Положительная сдвигается влево, а отрицательная – вправо.

Ассимметрия находится как сумма кубов отклонений фактического значения от средней, взвешенных на количество регионов, и дополнительно поделенных на куб среднего квадратического отклонения.

1,3887/69=0,0201 – сумма кубов отклонений фактического значения от средней, взвешенных на количество регионов.

0,333^3=0,0369; – куб среднего квадратического отклонения

0,0201/0,0369=0,5447 – ассиметрия.

Мода представляет собой максимально часто встречающееся значение переменной (иными словами, наиболее «модное» значение переменной), например, популярная передача на телевидении, модный цвет платья или марка автомобиля и т.д., Сложность в том, что редкая совокупность имеет единственную моду. (Например: 2, 6, 6, 8, 9, 9, 9, 10 – мода = 9).

Если распределение имеет несколько мод, то говорят, что оно мультимодально или многомодально (имеет два или более «пика»).

Мода – показатель указывающий на наиболее часто встречающийся в ряде распределения вариант. В случае, когда ряд имеет интервальное распределение (как в этой задаче), моду нужно высчитывать по спец форме. Для этого берется интервал с наибольшим количеством регионов, у нас это – 0,82–1,13. Для вычисления моды нам нужны значения: нижняя граница модального (самого многочисленного по регионам) интервала – 0,82; количество регионов в модальном интервале – 28; количество регионов в домодальном и послемодальном интервалах – 4 и 19 соответственно; величина модального интервала (здесь под величиной понимается не количество регионов, а разница между нижней и верхней границей интервала) – 0,31. Мода рассчитывается как нижняя граница, плюс величина модального интервала умноженная на дробь, где в числителе – разница между количеством регионов модального и домодального интервалов, а в знаменателе – сумма из разниц количества регионов модального и домодального, модального и послемодального интервалов.

Мо = 0,82 + 0,31*[(28 – 4) / ((28 – 4) + (28 – 19))] = 0,82 + 0,31*[24 / 33] = 0,82 + 0,31*0,7272 = 0,82 + 0,225 = 1,045

Все выше перечисленное – абсолютные показатели вариации.

К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия и среднее квадратическое отклонение.

Относительные показатели вариации – это коэффициенты осцилляции, вариации, относительное линейное отклонение и др.

К относительным показателям вариации относятся: относительный размах вариации (или коэффициент осцилляции – R); коэффициент вариации, и др.

Коэффициент осцилляции высчитывается как разница между максимальным и минимальным значением ряда, поделенная на среднее значение. При интервальном распределении берутся середины крайних интервалов: (1,895 – 0,665) / 1,236 * 100% = 99,5%

Коэффициент вариации рассчитывается как отношение СКО к среднему значению: 0,333 / 1,236 * 100% = 26,9%

Мода и медиана могут быть определены графически: мода – по гистограмме, а медиана – по кумуляте.

Построим гистограмму распределения числа территорий по каждой группе по размерам заработной платы, для чего по оси х – размеры заработной платы, по оси у – число территорий


В прямоугольнике, имеющем наибольшую высоту, проводим две линии и из точки пересечения опускаем перпендикуляр на ось х. Значение х на оси абсцисс в этой точке есть мода (М0).

Для графического изображения медианы по накопленным частотам строим кумуляту. Для этого из верхней границы каждого интервала на оси абсцисс восстанавливаем перпендикуляр, соответствующий по высоте накопленной частоте с начала ряда по данный интервал. Соединив последовательно вершины перпендикуляров, получим кривую, называемую кумулятой. Из точки на оси ординат, соответствующей половине всех частот (порядковому номеру медианы), проводим прямую, параллельную оси абсцисс, до пересечения её с кумулятой. Опустив из этой точки перпендикуляр на ось абсцисс, находим значение медианы (Ме).



Пользуясь кумулятой, можно определить значение признака у любой единицы ранжированного ряда.

Задача 4

Структура социальных выплат в 2002 году в федеральных округах РФ (в процентах от общей суммы социальных выплат).

Виды социальных выплат Федеральные округа
Уральский Южный
1 Пенсии 67,3 81,4
2 Пособия 23,1 16,1
3 Стипендии 1,0 1,1
4 Страховые возмещения 8,0 0,7
5 Прочие выплаты 0,6 0,7
Итого 100,0 100,0

Задание:

Проанализируйте особенности структур, используя оценочные показатели различий структуры.

Задача на изучение различий в структуре, насколько распределение в одном регионе отличается от распределения в другом.

Простейший показатель структурных различий – Среднее абсолютное изменение. Рассчитывается он путём сложения разниц по каждой строке по модулю: | 67,3 – 81,4 | + | 23,1 – 16,1 | + | 1,0 – 1,1 | + | 8,0 – 0,7 | + | 0,6 – 0,7 | = 28,6

Показывает он накопленные отклонения по всему сравниваемому ряду. В данном случае по всем строкам суммарное отклонение составило 28,6 процентных пункта (в первой строке отклонение – 14,1; во второй – 7,0; в третьей – 0,1; в четвёртой – 7,3; в пятой – 0,1; а всего – 28,6).

Так как сумма модулей отклонений может быть не больше двух, то, поделив Среднее абсолютное отклонение на 2 можно получить показатель Интенсивности абсолютного отклонения: 28,6 / 2 = 14,3 процентных пункта. Этот показатель уже можно проинтерпретировать – различие между распределением выплат по двум федеральным округам составило 14,3% от предельно возможного (если структуры идентичны, то было бы 0%, если бы структуры были абсолютно отличные – 100%).

Вместе с модульным показателем используют ещё и показатель Квадратического отклонения.

Получается он суммированием квадратов отклонений по каждой строке, делением на количество элементов структуры (строк) и извлечением из этого квадратного корня.

Корень [(67,3 – 81,4) + (23,1 – 16,1) + (1,0 – 1,1) + (8,0 – 0,7) + (0,6 – 0,7)] / 5 = Корень [198,81 + 49 + 0,01 + 53,29 + 0,01] / 5 = Корень [301,12 / 5] = 7,77 процентных пункта.

Для этого показателя так же можно рассчитать интенсивность. Максимальное значение Квадратического отклонения для двух рядов с пятью строками это корень из соотношения 2 / 5, который равен 0,632. Если поделить показатель Квадратического отклонения на это максимальное значение получим сколько процентных пунктов наше Квадратическое отклонение составляет от предельно возможного: 7,77 / 0, 632 = 12,3% от предельно возможного.

Задача 5

Имеются фактические данные государственной статистики о системе детских оздоровительных учреждений.

Задание:

1. Определите недостающий признак-фактор и рассчитайте его отчётные и базисные значения.

2. Рассчитайте общие индексы: а) числа учреждений; б) численности отдохнувших в них детей; в) индекс недостающего признака-фактора. Представьте результаты в системе взаимосвязанных индексов.

Виды детских оздоровительных учреждений Число детских оздоровительных учреждений, тыс. Численность детей, отдохнувших в них за лето, тыс. чел. Численность детей, отдохнувших в среднем на одно учреждение Индекс числа учреждений Индекс численности отдохнувших людей Индекс в среднем на одно учреждение
1996 2002 1996 2002 1996 (гр3/гр1) 2002 (гр4/гр2) 1996 (гр2/гр1) 2002 (гр4/гр3) (гр6/гр5)
1 2 3 4 5 6 7 8 9
Загородные 3,1 3,3 1774,1 2185,0 572,3 662,1 1,06 1,23 1,16
Санаторного типа 0,4 0,5 123,7 183,9 309,3 367,8 1,25 1,49 1,19
Для школьников с дневным пребыванием 25,6 32,9 1933,8 2772,0 75,5 84,3 1,29 1,43 1,12
Профильные 3,4 4,5 327,6 446,3 96,4 99,2 1,32 1,36 1,03
Труда и отдыха 7,5 8,0 646,7 583,4 86,2 72,9 1,07 0,90 0,85
Итого - - 4805,9 6171,6

Недостающим признаком-фактором в данной задаче является численность детей, отдохнувших в среднем на одно учреждение, которое мы рассчитаем


Список литературы

1. Экономическая статистика / под редакцией Ю.Н. Иванова. – М., Инфра-М, 2002 год.

2. Практикум по общей статистики – М. Финансы и статистика 2005 год

3. Общая теория статистики – финансы и статистика 2006 год

4. Общая теория статистики: Статистическая методология в коммерческой деятельности: учебник для вузов / Под ред. А.С. Спирина и О.Е. Башиной. – М.: Финансы и статистика

5. Экономическая статистика. учебник. Под ред. Иванова Ю.Н. Москва: ИНФРА-М, 2004.