Смекни!
smekni.com

Расчет показателей вариации (стр. 1 из 2)

Задача 1

Приводятся данные по территориям Центрального округа за 2002 год.

Задание:

Необходимо сгруппировать территории с уровнем фондовооруженности «до 240 тыс. руб. и более». В каждой группе рассчитать:

– число территорий;

– долю занятых;

– фондовооружённость.

Оформить в виде таблицы с соблюдением правил. Проанализировать полученные результаты:

№ п/п Численность населения на 01.01.00 г., млн. чел. Среднегодовая численность занятых в экономике Валовой региональный продукт, млрд. руб. Основные фонды в экономике, млрд. руб. Приходится в среднем стоимости фондов на 1-го занятого в экономике, тыс. руб.
Всего, млн. чел. в % к численности населения
фондовооруженность менее 240 тыс. руб.
1 Орловская 0,9 0,37 41,7 10,2 54,5 145,7
2 Ивановская 1,2 0,48 39,3 9,1 74,2 154,9
3 Владимирская 1,6 0,70 43,6 16,0 115,2 164,8
4 Тульская 1,7 0,77 44,0 19,1 150,3 196,5
5 Калужская 1,1 0,47 43,8 10,9 94,9 200,6
6 Рязанская 1,3 0,52 40,5 14,2 107,3 206,3
7 Московская 6,4 2,33 36,1 100,6 489,3 209,9
8 Брянская 1,4 0,55 38,0 11,9 119,6 218,9
Итого 15,6 6,19 х 192,0 1205,3 х
фондовооруженность более 240 тыс. руб.
1 Москва 8,5 5,05 59,2 362,5 1222,8 242,1
2 Костромская 0,8 0,33 41,6 8,9 79,1 243,4
3 Смоленская 1,1 0,45 39,6 12,2 112,6 251,9
4 Тверская 1,6 0,63 39,6 17,7 162,7 257,8
5 Ярославская 1,4 0,64 45,0 22,3 167,8 264,3
Итого 13,4 7,10 х 423,6 1745,0 х

В каждой группе рассчитать: – число территорий. В первой группе с фондоовооруженностью менее 240 тыс. руб. число территорий – 8. Во второй группе с фондовооруженностью 240 тыс. руб. и более – 5 территорий.

Доля занятых. В группе с фондовооруженностью менее 240 тыс. руб.

Доля занятых = Сумма среднегодовой численности занятых в экономике / Сумму численности населения по 8-ми территориям*100%. Имеем 6,19/15,6*100%=39,7% чел. – доля занятых в первой группе. 7,10/13,4*100%=53,0% чел. – доля занятых во второй группе

Фондовооруженность – показатель, характеризующий оснащенность работников основными фондами. Фондовооруженность исчисляется путем деления среднегодовой стоимости основных фондов на среднесписочную численность работников. Фондовооруженность = сумма основных фондов в экономике в тыс. руб./ сумма среднегодовой численности занятых в экономике в тыс. чел. Имеем: 1205300000000/6190000=194,7 тыс. руб. – фондовооруженность в первой группе. 1745000000000/7100000=245,8 тыс. руб. – фондовооруженность во второй группе

Вывод: В группе с фондовооруженностью выше 240 тыс. руб. одновременно обнаруживается большая доля занятых человек в общей численности населения

Задача 2

Приводятся сведения по регионам Европейской части России

Задание:

Выполните расчёт средних значений каждого показателя, укажите вид и форму использованных средних. Приведите расчётные формулы. Проверьте правильность результатов.

Регионы Численность занятых в экономике Среднемесячный душевой доход населения, руб. Стоимость валового регионального продукта в среднем на
Всего, млн. чел. В% от численности населения 1-го занятого в экономике, тыс. руб. 1 руб. стоимости основных фондов в экономике, коп.
Волго-Вятский 3,59 43,2 860 27,5 14,5
Центрально-Чернозёмный 3,15 40,5 1059 27,9 12,5

Средняя численность занятых в экономике всего – простая, арифметическая.

(3,59 + 3,15) / 2 = 3,37

Средний % от численности населения – взвешенная, геометрическая

(3,59 + 3,15) / (3,59/43,2/100 + 3,15/40,5/100) = 6,74 / (8,31 + 7,77) = 6,74 / 16,08 = 0,419

0,419 или 41,9%

Среднемесячный душевой доход – взвешенная, арифметическая

(860 * 3,59 + 1059 * 3,15) / (3,15 + 3,59) = (3087,4 + 3335,85) / 6,74 = 6423,25 / 6,74 = 953

Средняя стоимость валового регионального продукта на 1 занятого – взвешенная, арифметическая

(27,5*3,59 + 27,9*3,15) / (3,15 + 3,59) = (98,7 + 87,9) / 6,74 = 186,6 / 6,74 = 27,7

Средняя стоимость валового регионального продукта на 1 руб. основных фондов – взвешенная, геометрическая

для расчета нужны данные из предыдущего пункта (которые подчеркнуты), это – валовый региональный продукт в миллиардах рублей.

(98,7 + 87,9) / (98,7/14,5 + 87,9/12,5) = 186,6 / (6,8 + 7,0) = 186,6 / 13,8 = 13,5

Задача 3

Приводятся данные за 2002 год о распределении территорий РФ по уровню среднемесячной начисленной заработной платы, тыс. руб.

Выполните расчёт абсолютных и относительных показателей вариации, коэффициент асимметрии и показатель моды, постройте на одном графике гистограмму и полигон распределения частот, выполните анализ полученных результатов.

Группы территорий РФ по уровню среднемесячной начисленной заработной платы, тыс. руб. Число территорий в каждой группе Среднее значение з/пл. Среднее значение зарплаты в каждой группе Абсолютное отклонения от средней Квадрат отклонения от средней Куб отклонения
1 2 3 4 5 6 7 8 9
[f '] [x'] [х' * f '] [x' – x-ср.] [(x' – x-ср.)^2] [(x' – x-ср.)^3] [(x' – x-ср.)^2 * f ' [(x' – x-ср.)^3 * f ']
От 0,51 до 0,82 4 0,665 2,66 -0,565 0,3192 -0,1804 1,2768 -0,7216
От 0,82 до 1,13 28 0,975 27,30 -0,255 0,0650 -0,0166 1,82 -0,4648
От 1,13 до 1,44 19 1,285 24,42 +0,055 0,0030 0,0002 0,057 0,0038
От 1,44 до 1,74 11 1,59 17,49 +0,360 0,1296 0,0466 1,4256 0,5126
От 1,74 до 2,05 7 1,895 13,27 +0,665 0,4422 0,2941 3,0954 2,0587
Итого: 69 Х 85,14 Х Х Х 7,6748 1,3887

Х ср = 1,23.

Дисперсия = 7,6748/69=0,111

Среднее квадратическое отклонение или СКО = 0,333

Ассиметрия – 0,5447

Для расчёта показателей вариации, предварительно требуется дополнить таблицу столбцами с результатами промежуточных расчетов (первые два столбца как в задании).

Среднее значение зарплаты в группе – середина интервала данной группы.

Среднее (оценка среднего, выборочное среднее) – сумма значений переменной, деленная на n (число значений переменной). Если вы имеете значения Х(1),…, X(N), то формула для выборочного среднего имеет вид:

`х =

Средняя арифметическая – одна из основных числовых характеристик вариационного ряда. (х)

– простая х = ∑ хi / n

– взвешенная х = ∑ хi fi / ∑ fi, где хi – отдельные значения признака;

fi – статистический вес

Статистический вес отражает то общее, что характерно для всех единиц совокупности. В задании рассчитывается средняя арифметическая взвешенная, где вес представлен абсолютными величинами. Сначала перейдем от интервального ряда к дискретному, используя при этом их среднее значение вместо интервальных: i ср. = (i min + i max) / 2

Для первого интервала: (0,82 + 0,51)/2 = 0,665; второго: (1,13 + 0,82)/2 = 0,975; третьего: (1,44 + 1,13) = 1,285; четвертого: (1,74 +1,44) = 1,59; пятого: (2,05 + 1,74)/2 = 1,895

Первый показатель, который рассчитывается – средняя. В данном случае мы рассчитываем взвешенную арифметическую среднюю, среднюю из значений з/п (столбец 3, который в свою очередь есть способ представления данных из столбца 1) взвешенных на количество регионов, попавших в данный интервал заработных плат (столбец 2).

В столбце 4 как раз и показаны произведения з/п на количество регионов: 0,665*4 = 2,66; 0,975*28 = 27,3; 1,285*19 = 24,415; 1,59*11 = 17,49; 1,875*7 = 13,265.

Сумма по этому столбцу поделенная на общее количество регионов – 69 – и будет средней: 85,14/69 = 1,23

Средняя арифметическая равна:

(((0,82 + 0,51)/2)*4+((1,13 + 0,82)/2 *28 + ((1,44 + 1,13)/2*19 + ((1,74 +1,44)/2*11 + ((2,05 + 1,74)/2*7)/69= 1,23

Х ср = 1,23.

Столбец 5 – промежуточный, из него будут браться значения для последующих расчетов.

Для расчета показателя «дисперсия» строится столбец 6 и столбец 8.

Выборочное среднее является той точкой, сумма отклонений наблюдений от которой равна 0. Формально это записывается следующим образом: (`х – х1) + (`х – х2) +… + (`х – хn) =0.

Для оценки степени разброса (отклонения) какого-то показателя от его среднего значения, наряду с максимальным и минимальным значениями, используются понятия дисперсии и стандартного отклонения.

Дисперсия выборки или выборочная дисперсия (от английского variance) – это мера изменчивости переменной. Термин впервые введен Фишером в 1918 году. Выборочная дисперсия вычисляется по формуле:


s2 =

где `х – выборочное среднее,

N – число наблюдений в выборке.

Дисперсия меняется от нуля до бесконечности. Крайнее значение 0 означает отсутствие изменчивости, когда значения переменной постоянны.