Проведенное исследование мощности (методом статистических испытаний) первых четырех из перечисленных выше критериев (при различных вариантах функций распределения F(x) и G(x)) подтвердило преимущество критериев Смирнова и омега-квадрат и при объемах выборок 6-12.
Критерий Смирнова однородности двух выборок. Он предложен членом-корреспондентом АН СССР Н.В. Смирновым в 1939 г. (см. справочник [8]). Единственное ограничение - функции распределения F(x) и G(x) должны быть непрерывными. Напомним, что согласно Л.Н. Большеву и Н.В. Смирнову [8] значение эмпирической функции распределения в точке х равно доле результатов наблюдений в выборке, меньших х. Критерий Смирнова основан на использовании эмпирических функций распределения Fm(x) и Gn(x), построенных по первой и второй выборкам соответственно. Значение статистики Смирнова
сравнивают с соответствующим критическим значением (см., например, [8]) и по результатам сравнения принимают или отклоняют гипотезу Н0 о совпадении (однородности) функций распределения. Практически значение статистики Dm,п рекомендуется согласно монографии [8] вычислять по формулам
, , ,где x'1<x'2<…<x'm - элементы первой выборки x1,x2,…,xm , переставленные в порядке возрастания, а y'1<y'2<…<y'n - элементы второй выборки y1,y2,…,yn , также переставленные в порядке возрастания.
Разработаны алгоритмы и программы для ЭВМ, позволяющие рассчитывать точные распределения, процентные точки и достигаемый уровень значимости для двухвыборочной статистики Смирнова
, разработаны подробные таблицы (см., например, методику [15], содержащую тексты программ и подробные таблицы).Однако у критерия Смирнова есть и недостатки. Его распределение сосредоточено в сравнительно небольшом числе точек, поэтому функция распределения растет большими скачками. В результате не удается выдержать заданный уровень значимости, реальный уровень значимости может в несколько раз отличаться от номинального (подробному обсуждению неклассического феномена существенного отличия реального уровня значимости от номинального посвящена работа [16]).
Критерий типа омега-квадрат (Лемана-Розенблатта). Статистика критерия типа омега-квадрат для проверки однородности двух независимых выборок имеет вид:
A =
Fm(x) – Gn(x))2 dHm+n(x) ,где Hm+n(x) – эмпирическая функция распределения, построенная по объединенной выборке,
Hm+n(x) =
Fm(x) + Gn(x) .Статистика A типа омега-квадрат была предложена Э. Леманом в 1951 г., изучена М. Розенблаттом в 1952 г., а затем и другими исследователями. Она зависит лишь от рангов элементов двух выборок в объединенной выборке. Пусть
- первая выборка, - соответствующий вариационный ряд, -вторая выборка, - вариационный ряд, соответствующий второй выборке. Поскольку функции распределения независимых выборок непрерывны, то с вероятностью 1 все выборочные значения различны, совпадения отсутствуют. Статистика А представляется в виде (см., например, [8]):где ri - ранг x'i и sj - ранг y'j в общем вариационном ряду, построенном по объединенной выборке.
Правила принятия решений при проверке однородности двух выборок на основе статистик Смирнова и типа омега-квадрат, т.е. таблицы критических значений в зависимости от уровней значимости и объемов значимости приведены, например, в таблицах [8].
Рекомендации по выбору критерия однородности. Для критерия типа омега-квадрат нет выраженного эффекта различия между номинальными и реальными уровнями значимости. Поэтому мы рекомендуем для проверки однородности функций распределения (гипотеза H0) применять статистику А типа омега-квадрат. Если методическое, табличное или программное обеспечение для статистики Лемана-Розенблатта отсутствует, рекомендуем использовать критерий Смирнова. Для проверки однородности математических ожиданий (гипотеза H'0) целесообразно применять критерий Крамера-Уэлча. По нашему мнению, статистики Стьюдента, Вилкоксона и др. допустимо использовать лишь в отдельных частных случаях, рассмотренных выше.
Некоторые соображения о внедрении современных методов прикладной статистики в практику технических и технико-экономических исследований. Даже из проведенного выше разбора лишь одной из типичных статистических задач - задачи проверки однородности двух выборок - можно сделать вывод о целесообразности широкого развертывания в организациях различных форм собственности работ по критическому анализу сложившейся в технических и технико-экономических исследованиях практики статистической обработки данных и по внедрению накопленного арсенала современных методов прикладной статистики. По нашему мнению, широкого внедрения заслуживают, в частности, методы многомерного статистического анализа, планирования эксперимента, статистики объектов нечисловой природы. Очевидно, рассматриваемые работы должны быть плановыми, организационно оформленными, проводиться мощными самостоятельными организациями и подразделениями. Целесообразно создание службы статистических консультаций в системе научно-исследовательских учреждений и вузов технического и технико-экономического профиля.
Методы проверки однородности для связанных выборок
Начнем с практического примера. Приведем письмо главного инженера подмосковного химического комбината (некоторые названия изменены).
"Директору Института высоких статистических технологий и эконометрики (Фамилия, имя, отчество)
Наш комбинат выпускает мастику по ГОСТ (следует номер) и является разработчиком указанного стандарта.
В результате исследовательских работ по подбору стандартного метода определения вязкости мастики на комбинате накоплен большой опыт сравнительных данных определения вязкости по двум методам:
- неразбавленной мастики - на нестандартном приборе фабрики им. Петрова;
- раствора мастики - на стандартном вискозиметре ВЗ-4.
Учитывая высокую компетентность сотрудников Вашего института, прошу Вас, в порядке оказания технической помощи нашему предприятию, поручить соответствующей лаборатории провести обработку представленной статистики современными эконометрическими методами и выдать заключение о наличии (или отсутствии) зависимости между указанными выше методами определения вязкости мастики. Ваш5е заключение необходимо для решения спорного вопроса о целесообразности вновь ввести в ГОСТ (следует номер) метода определения вязкости мастики по вискозиметру ВЗ-4, который, по мнению некоторых потребителей, был необоснованно исключен из этого ГОСТ по изменению № 1.
Заранее благодарю Вас за оказанную помощь.
Приложение: статистика на 3 листах.
Главный инженер (Подпись) (Фамилия, имя, отчество)"
Комментарий. Вязкость мастики - один из показателей качества мастики. Измерять этот показатель можно по-разному. И, как оказалось, разные способы измерения дают разные результаты. Ничего необычного в этом нет. Однако поставщику и потребителю следует согласовать способы измерения показателей качества. Иначе достаточно часто поставщик (производитель) будет утверждать, что он выполнил условия контракта, а потребитель заявлять, что нет. Такая конфликтная ситуация иногда называется арбитражной, поскольку для ее решения стороны могут обращаться в арбитражный суд. Простейший метод согласования способов измерения показателей состоит в том, чтобы выбрать один из них и внести в государственный стандарт, который тем самым будет содержать не только описание продукции, перечень ее показателей качества и требований к ним, но и способы измерения этих показателей.
Заключение по статистическим данным, представленным химическим комбинатом. Для каждой из 213 партий мастики представлены два числа - результат измерения вязкости на нестандартном приборе фабрики им. Петрова и результат измерения вязкости на стандартном вискозиметре ВЗ-4. Требуется установить, дают ли два указанных метода сходные результаты. Если они дают сходные результаты, то нет необходимости вводить в соответствующий ГОСТ указание о методе определения вязкости. Если же методы дают существенно различные результаты, то подобное указание ввести необходимо.
Для применения эконометрических методов в рассматриваемой задаче необходимо описать вероятностную модель. Считаем, что статистические данные имеют вид
где xi -результат измерения на нестандартном приборе фабрики им. Петрова в i-ой партии, а yi - результат измерения вязкости на стандартном вискозиметре ВЗ-4 в той же i-ой партии. Пусть ai - истинное значение показателя качества в i-ой партии. Естественно считать, что указанные выше случайные вектора независимы в совокупности. При этом они не являются одинаково распределенными, поскольку отличаются истинными значениями показателей качества ai. Принимаем, что при каждом i случайные величины xi - ai и yi - ai независимы и одинаково распределены. Это условие и означает однородность в связанных выборках. Параметры связи - величины ai . Их наличие не позволяет объединить первые координаты в одну выборку, вторую - во вторую, как делалось в случае проверки однородности двух независимых выборок.