В предположении непрерывности функций распределения из условия однородности в связанных выборках вытекает, что
Рассмотрим случайные величины
Из последнего соотношения вытекает, что при справедливости гипотезы однородности для связанных выборок эти случайные величины имеют нулевые медианы. Другими словами, проверка того, что метода измерения вязкости дают схожие результаты, эквивалентна проверке равенства 0 медиан величин Zi.Для проверки гипотезы о том, что медианы величин Zi нулевые, применим широко известный критерий знаков (см., например, справочник [8, с.89-91]). Согласно этому критерию необходимо подсчитать, в скольких партиях
и в скольких . Для представленных химическим комбинатом данных в 187 случаях из 213 и в 26 случаях из 213.Если рассматриваемая гипотеза верна, то число W осуществлений события
имеет биномиальное распределение с параметрами p = 1/2 и n = 213. Математическое ожидание М(W)=106,5, а среднее квадратическое отклонение Следовательно, интервал - это интервал 84<W<129. Найденное по данным химического комбината значение W=187 лежит далеко вне этого интервала. Поэтому рассматриваемую гипотезу необходимо отвергнуть (на любом используемом в прикладных работах уровне значимости, в частности, на уровне значимости 1%).Таким образом, статистический анализ показывает, что два метода дают существенно различные результаты - по прибору фабрики им. Петрова результаты измерений, как правило, меньше, чем по вискозиметру ВЗ-4. Это означает, что в соответствующий ГОСТ целесообразно ввести указание на метод определения вязкости.
Система вероятностных моделей при проверке гипотезы однородности для связанных выборок. Как и в случае проверки однородности для независимых выборок, система вероятностных моделей состоит из трех уровней. Наиболее простая модель - на уровне однородности альтернативного признака - уже рассмотрена. Она сводится к проверке гипотезы для биномиального распределения:
Речь идет о "критерии знаков". При справедливости гипотезы однородности число W осуществлений события
имеет биномиальное распределение с вероятностью успеха p = 1/2 и числом испытаний n. Альтернативная гипотеза состоит в том, что вероятность успеха отличается от 1/2:Гипотезу p = 1/2 можно проверять как непосредственно с помощью биномиального распределения (используя таблицы или программное обеспечение), так и опираясь на теорему Муавра-Лапласа. Согласно этой теореме
при всех х, где Ф(х) - функция стандартного нормального распределения с математическим ожиданием 0 и дисперсией 1. Из теоремы Муавра-Лапласа вытекает правило принятия решений на уровне значимости 5%: если
то гипотезу однородности связанных выборок принимают, в противном случае отклоняют. Как обычно, при желании использовать другой уровень значимости применяют в качестве критического значения иной квантиль нормального распределения. Использование предельных теорем допустимо при достаточно больших объемах выборки. По поводу придания точного смысла термину "достаточно большой" продолжаются дискуссии. Обычно считается, что несколько десятков (два-три десятка) - это уже "достаточно много". Более правильно сказать, что ответ зависит от задачи, от ее сложности и практической значимости.
Второй уровень моделей проверки однородности связанных выборок - это уровень проверки однородности характеристик, прежде всего однородности математических ожиданий. Исходные данные - количественные результаты измерений (наблюдений, испытаний, анализов, опытов) двух признаков хj и уj , j = 1,2,…,n, а непосредственно анализируются их разности Zj = хj - уj , j = 1,2,…,n. Предполагается, что эти разности независимы в совокупности и одинаково распределены, однако функция распределения неизвестна эконометрику. Необходимо проверить непараметрическую гипотезу
Альтернативная гипотеза также является непараметрической и имеет вид:
Как и в случае проверки гипотезы согласованности для независимых выборок с помощью критерия Крамера-Уэлча, в рассматриваемой ситуации естественно использовать статистику
где
среднее арифметическое разностей, а
выборочное среднее квадратическое отклонение. Из центральной Предельной Теоремы теории вероятностей и теорем о наследовании сходимости, полученных в монографии [11], вытекает, что
при всех х, где Ф(х) - функция стандартного нормального распределения с математическим ожиданием 0 и дисперсией 1. Отсюда вытекает правило принятия решений на уровне значимости 5%: если
то гипотезу однородности математических ожиданий связанных выборок принимают, в противном случае отклоняют. Как обычно, при желании использовать другой уровень значимости применяют в качестве критического значения иной квантиль нормального распределения. Повторим, что использование предельных теорем допустимо при достаточно больших объемах выборки.
Третий уровень моделей проверки однородности связанных выборок - это уровень проверки однородности (совпадения) функций распределения. Необходимо проверить непараметрическую гипотезу наиболее всеохватного вида:
где
При этом предполагается, что все участвующие в вероятностной модели случайные величины независимы (в совокупности) между собой.
Отметим одно важное свойство функции распределения случайной величины Z. Если случайные величины х и у независимы и одинаково распределены, то для H(x)=P(Z<x) выполнено, как нетрудно видеть, соотношение
H(-x)=1-H(x).
Это соотношение означает симметрию функции распределения относительно 0. Плотность такой функции распределения является четной функцией, ее значения в точках х и (-х) совпадают.
Какого типа отклонения от гипотезы симметрии можно ожидать при альтернативных гипотезах?
Как и в случае проверки однородности независимых выборок, в зависимости от вида альтернативной гипотезы выделяют два подуровня моделей. Рассмотрим сначала альтернативу сдвига
В этом случае распределение Z при альтернативе отличается сдвигом от симметричного относительно 0. Для проверки гипотезы однородности может быть использован критерий знаковых рангов, разработанный Вилкоксоном (см., например, справочник [9, с.46-53]).
Он строится следующим образом. Пусть R(Zj) является рангом |Zj| в ранжировке от меньшего к большему абсолютных значений разностей |Z1|, |Z2|,…,|Zn|, j=1,2,…,n. Положим для j=1,2,…,n
Статистика критерия знаковых рангов имеет вид
Таким образом, нужно просуммировать ранги положительных разностей в вариационном ряду, построенном стандартным образом по абсолютным величинам всех разностей.
Для практического использования статистики критерия знаковых рангов Вилкоксона либо обращаются к соответствующим таблицам и программному обеспечению, либо применяют асимптотические соотношения. При выполнении нулевой гипотезы статистика