имеет асимптотическое (при
то гипотезу однородности связанных выборок по критерию знаковых рангов Вилкоксона принимают, в противном случае отклоняют. Как обычно, при желании использовать другой уровень значимости применяют в качестве критического значения иной квантиль нормального распределения. Повторим еще раз, что использование предельных теорем допустимо при достаточно больших объемах выборки.
Альтернативная гипотеза общего вида записывается как
при некотором х0 . Таким образом, проверке подлежит гипотеза симметрии относительно 0, которую можно переписать в виде
H(x) + H(-x) -1 = 0 .
Для построенной по выборке Zj = хj - уj , j = 1,2,…,n, эмпирической функции распределения Hn(x) последнее соотношение выполнено лишь приближенно:
Как измерять отличие от 0? По тем же соображениям, что и в предыдущем пункте, целесообразно использовать статистику типа омега-квадрат. Соответствующий критерий был предложен в работе [17]. Он имеет вид
В работе [17] найдено предельное распределение этой статистики:
В табл.1 приведены критические значения статистики типа омега-квадрат для проверки симметрии распределения (и тем самым для проверки однородности связанных выборок), соответствующие наиболее распространенным значениям уровней значимости (расчеты проведены Г.В. Мартыновым).
Табл.1. Критические значения статистики
Значение функции распределения | Уровень значимости | Критическое значение х статистики |
0,90 | 0,10 | 1,20 |
0,95 | 0,05 | 1,66 |
0,99 | 0,01 | 2,80 |
Как следует из табл.1, правило принятия решений при проверке однородности связанных выборок в наиболее общей постановке и при уровне значимости 5% формулируется так. Вычислить статистику
Пример. Пусть величины Zj , j=1,2,…,20, таковы:
20, 18, (-2), 34, 25, (-17), 24, 42, 16, 26, 13, (-23), 35, 21, 19, 8, 27, 11, (-5), 7.
Соответствующий вариационный ряд
(-23)<(-17)<(-5)<(-2)<7<8<11<13<16<18<19<20<21<24<25<26<27<34<35<42.
Для расчета значения статистики
Табл.2. Расчет значения статистики
j | Z(j) | Hn(Z(j)) | -Z(j) | Hn(-Z(j)) | Hn(Z(j))+ Hn(-Z(j))-1 | (Hn(Z(j))+ Hn(-Z(j))-1)2 |
1 | -23 | 0,05 | 23 | 0,65 | -0,30 | 0,09 |
2 | -17 | 0,10 | 17 | 0,45 | -0,45 | 0,2025 |
3 | -5 | 0,15 | 5 | 0,20 | -0,65 | 0,4225 |
4 | -2 | 0,20 | 2 | 0,20 | -0,60 | 0,36 |
5 | 7 | 0,25 | -7 | 0,10 | -0,65 | 0,4225 |
6 | 8 | 0,30 | -8 | 0,10 | -0,60 | 0,36 |
7 | 11 | 0.35 | -11 | 0,10 | -0,55 | 0,3025 |
8 | 13 | 0,40 | -13 | 0,10 | -0,50 | 0,25 |
9 | 16 | 0,45 | -16 | 0,10 | -0,45 | 0,2025 |
10 | 18 | 0,50 | -18 | 0,05 | -0,45 | 0,2025 |
11 | 19 | 0,55 | -19 | 0,05 | -0,40 | 0,16 |
12 | 20 | 0,60 | -20 | 0,05 | -0,35 | 0,1225 |
13 | 21 | 0,65 | -21 | 0,05 | -0,30 | 0,09 |
14 | 24 | 0,70 | -24 | 0 | -0,30 | 0,09 |
15 | 25 | 0,75 | -25 | 0 | -0,25 | 0,0625 |
16 | 26 | 0,80 | -26 | 0 | -0,20 | 0,04 |
17 | 27 | 0,85 | -27 | 0 | -0,15 | 0,0225 |
18 | 34 | 0,90 | -34 | 0 | -0,10 | 0,01 |
19 | 35 | 0,95 | -35 | 0 | -0,05 | 0,0025 |
20 | 42 | 1,00 | -42 | 0 | 0 | 0 |
Результаты расчетов (суммирование значений по седьмому столбцу табл.2) показывают, что значение статистики
В настоящей главе затронута лишь небольшая часть непараметрических методов анализа числовых эконометрических данных. Обратим вн6имание на непараметрические оценки плотности, которые используются для описания данных, проверки однородности, в задачах восстановления зависимостей и других областях эконометрики. Эконометрические оценки плотности в общем виде рассмотрены в главе 8.
Цитированная литература
1. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. - Л.: Энергоатомиздат, 1985. - 248 с.
2. Новицкий П.В. Основы информационной теории измерительных устройств. -Л.: энергия, 1968. - 248 с.
3. Боровков А.А. Теория вероятностей. - М.: Наука, 1976. - 352 с.
4. Петров В.В. Суммы независимых случайных величин. - М.: Наука, 1972. - 416 с.
5. Золотарев В.М. Современная теория суммирования независимых случайных величин. - М.: Наука, 1986. - 416 с.
6. Егорова Л.А., Харитонов Ю.С., Соколовская Л.В.//Заводская лаборатория. - 1976. Т.42, №10. С. 1237.
7. Артемьев Б.Г., Голубов С.М. Справочное пособие для работников метрологических служб.- М.: Изд-во стандартов, 1982. - 280 с.
8. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. – М.: Наука, 1983. - 416 с.
9. Холлендер М., Вульф Д. Непараметрические методы статистики. – М.: Финансы и статистика, 1983. - 518 с.
10. Боровков А.А. Математическая статистика. – М.: Наука, 1984. - 472 с.
11. Îðëîâ À.È. Óñòîé÷èâîñòü â ñîöèàëüíî-ýêîíîìè÷åñêèõ ìîäåëÿõ. - Ì.:Íàóêà,1979. – 296 ñ.
12. Крамер Г. Математические методы статистики / Пер. с англ. / 2-е изд. - М.: Мир, 1975. – 648 с.
13. Гаек Я., Шидак 3. Теория ранговых критериев / Пер. с англ. - М.: Наука, 1971. – 376 с.
14. Смолянский М.Л. Таблицы неопределенных интегралов. - М.: ГИФМЛ, 1961. - 108 с.
15. Методика. Проверка однородности двух выборок параметров продукции при оценке ее технического уровня и качества. – М.: ВНИИ стандартизации, 1987. – 116 с.
16. Камень Ю.Э., Камень Я.Э., Орлов А.И. Реальные и номинальные уровни значимости в задачах проверки статистических гипотез / Заводская лаборатория. 1986. Т.52. № 12. С.55-57.
17. Орлов А.И. О проверке симметрии распределения. – Журнал «Теория вероятностей и ее применения». 1972. Т.17. No.2. С.372-377.