При т=п, как следует из формул (1) и (6), t=T. При т¹п этого равенства нет. В частности, при sx2 в (1) стоит множитель (m-1), а в (6)- множитель п.
Если M(X)¹M(Y), то при больших объемах выборок
P(T<X)»Ф(x-cmn), (7)
где
. (8)При т=п или D(X)=D(Y), согласно формулам (3) и (8), amn=cmn , в остальных случаях равенства нет.
Из асимптотической нормальности статистики Т, формул (7) и (8) следует, что правило принятия решения для критерия Крамера-Уэлча выглядит так:
- если |T|<
то гипотеза однородности (равенства) математических ожиданий принимается на уровне значимости- если же |T|>
то гипотеза однородности (равенства) математических ожиданий отклоняется на уровне значимости .В эконометрике наиболее часто применяется уровень значимости
Тогда значение модуля статистики Т Крамера-Уэлча надо сравнивать с граничным значениемИз сказанного выше следует, что применение критерия Крамера-Уэлча не менее обосновано, чем применение критерия Стьюдента. Дополнительное преимущество - не требуется равенства дисперсий D(X)=D(Y). Распределение статистики Т не является распределением Стьюдента, однако и распределение статистики t, как показано выше, не является таковым в реальных ситуациях.
Распределение статистики Т при объемах выборок т=п=6, 8, 10, 12 и различных функциях распределений выборок F(x) и G(x) изучено нами совместно с Ю.Э. Камнем и Я.Э. Камнем методом статистических испытаний (Монте-Карло). Рассмотрены различные варианты функций распределения F(x) и G(x). Результаты показывают, что даже при таких небольших объемах выборок точность аппроксимации предельным стандартным нормальным распределением вполне удовлетворительна. Поэтому представляется целесообразным во всех тех случаях, когда в настоящее время используется критерий Стьюдента, заменить его на критерий Крамера-Уэлча. Конечно, такая замена потребует переделки ряда нормативно-технических и методических документов, исправления учебников и учебных пособий для вузов.
Пример. Пусть объем первой выборки
Для второй выборки Вычислим величину статистики Крамера-УэлчаПоскольку полученное значение по абсолютной величине меньше 1,96, то гипотеза однородности математических ожиданий принимается на уровне значимости 0,05.
Непараметрические методы проверки однородности. В большинстве экономических и технико-экономических задач представляет интерес не проверка равенства математических ожиданий или иных характеристик распределения, а обнаружение различия генеральных совокупностей, из которых извлечены выборки, т.е. проверка гипотезы H0. Методы проверки гипотезы H0 позволяют обнаружить не только изменение математического ожидания, но и любые иные изменения функции распределения результатов наблюдений при переходе от одной выборки к другой (увеличение разброса, появление асимметрии и т. д.). Как установлено выше, методы, основанные на использовании статистик t Стьюдента и Т Крамера-Уэлча, не позволяют проверять гипотезу H0 . Априорное предположение о принадлежности функций распределения F(x) и G(x) к какому-либо определенному параметрическому семейству (например, семействам нормальных, логарифмически нормальных, распределений Вейбулла-Гнеденко, гамма-распределений и др.), как показано выше, обычно нельзя достаточно надежно обосновать. Поэтому для проверки H0 следует использовать методы, пригодные при любом виде F(x) и G(x), т.е. непараметрические методы. (Термин «непараметрический метод» означает, что при использовании этого метода нет необходимости предполагать, что функции распределения результатов наблюдений принадлежат какому-либо определенному параметрическому семейству.)
Для проверки гипотезы H0 разработано много непараметрических методов - критерии Смирнова, типа омега-квадрат (Лемана-Розенблатта), Вилкоксона (Манна-Уитни), Ван-дер-Вардена, Сэвиджа, хи-квадрат и др. [8, 9, 13]. Распределения статистик всех этих критериев при справедливости H0 не зависят от конкретного вида совпадающих функций распределения F(x)ºG(x). Следовательно, таблицами точных и предельных (при больших объемах выборок) распределений статистик этих критериев и их процентных точек [8, 9] можно пользоваться при любых непрерывных функциях распределения результатов наблюдений.
Каким из непараметрических критериев пользоваться? Как известно [10], для выбора одного из нескольких критериев необходимо сравнить их мощности, определяемые видом альтернативных гипотез. Сравнению мощностей критериев посвящена обширная литература.
Хорошо изучены свойства критериев при альтернативной гипотезе сдвига
H1c : G(x)=F(x-d), d¹0.
Критерии Вилкоксона, Ван-дер-Вардена и ряд других ориентированы для применения именно в этой ситуации. Если m раз измеряют характеристику одного объекта и п раз - другого, а функция распределения погрешностей измерения произвольна, но не меняется при переходе от объекта к объекту (это более жесткое требование, чем условие равенства дисперсий), то рассмотрение гипотезы H1c оправдано. Однако в большинстве экономических и технико-экономических исследований нет оснований считать, что функции распределения, соответствующие выборкам, различаются только сдвигом.
Какие гипотезы можно проверять с помощью двухвыборочного критерия Вилкоксона?
Покажем (и это - основной результат настоящего пункта), что двухвыборочный критерий Вилкоксона (в литературе его называют также критерием Манна-Уитни) предназначен для проверки гипотезы
H0 : P(X < Y) = 1/2,
где X - случайная величина, распределенная как элементы первой выборки, а Y - второй.
В описанной выше вероятностной модели двух независимых выборок без ограничения общности можно считать, что объем первой из них не превосходит объема второй, m < n, в противном случае выборки можно поменять местами. Обычно предполагается, что функции F(x) и G(x) непрерывны и строго возрастают. Из непрерывности этих функций следует, что с вероятностью 1 все m + n результатов наблюдений различны. В реальных эконометрических данных иногда встречаются совпадения, но сам факт их наличия - свидетельство нарушений предпосылок только что описанной базовой математической модели.
Статистика S двухвыборочного критерия Вилкоксона определяется следующим образом. Все элементы объединенной выборки X1, X2, ..., Xm, Y1, Y2, ..., Yn упорядочиваются в порядке возрастания. Элементы первой выборки X1, X2, ..., Xm занимают в общем вариационном ряду места с номерами R1, R2, ..., Rm, другими словами, имеют ранги R1, R2, ..., Rm . Тогда статистика Вилкоксона - это сумма рангов элементов первой выборки
S = R1 + R2 + ... + Rm .
Статистика U Манна-Уитни определяется как число пар (Xi, Yj) таких, что Xi < Yj , среди всех mn пар, в которых первый элемент - из первой выборки, а второй - из второй. Как известно [13, с.160],
U = mn + m(m+1)/2 - S .
Поскольку S и U линейно связаны, то часто говорят не о двух критериях - Вилкоксона и Манна-Уитни, а об одном - критерии Вилкоксона (Манна-Уитни).
Критерий Вилкоксона - один из самых известных инструментов непараметрической статистики (наряду со статистиками типа Колмогорова-Смирнова и коэффициентами ранговой корреляции). Свойствам этого критерия и таблицам его критических значений уделяется место во многих монографиях по математической и прикладной статистике (см., например, [8, 9, 13]).
Однако в литературе имеются и неточные утверждения относительно возможностей критерия Вилкоксона. Так, одни полагают, что с его помощью можно обнаружить любое различие между функциями распределения F(x) и G(x). По мнению других, этот критерий нацелен на проверку равенства медиан распределений, соответствующих выборкам. И то, и другое, строго говоря, неверно. Это будет ясно из дальнейшего изложения.
Введем некоторые обозначения. Пусть F-1(t) - функция, обратная к функции распределения F(x). Она определена на отрезке [0;1]. Положим L(t) = G(F-1(t)). Поскольку F(x) непрерывна и строго возрастает, то F-1(t) и L(t) обладают теми же свойствами. Важную роль в дальнейшем изложении будет играть величина a = P(X< Y) . Как нетрудно показать,
Введем также параметры
Тогда математические ожидания и дисперсии статистик Вилкоксона и Манна-Уитни согласно [13, с.160] выражаются через введенные величины:
М(U) = mna , М(S) = mn + m(m+1)/2 - М(U) = mn(1- a) + m(m+1)/2,
D(S) = D(U) = mn [ (n - 1) b2 + (m - 1) g2 + a(1 -a) ] . (1)
Когда объемы обеих выборок безгранично растут, распределения статистик Вилкоксона и Манна-Уитни являются асимптотически нормальными (см., например, [13, гл.5 и 6]) с параметрами, задаваемыми формулами (1) .
Если выборки полностью однородны, т.е. их функции распределения совпадают, справедлива гипотеза
H0: F(x) = G(x) при всех x, (2)
то L(t) = t и a= 1/2. Подставляя в формулы (1), получаем, что
М(S) = m(m+n+1)/2, D(S) = mn(m+n+1)/ 12 (3) .
Следовательно, распределение нормированной и центрированной статистики Вилкоксона