f(pпp) = 1—
, f(pбр) = . (7)Таким образом, если входной уровень дефектности не превосходит pпp, то вероятность забракования партии мала, т.е. не превосходит
. Приемочный уровень дефектности выделяет зону А значений входного уровня дефектности, в которой нарушения экологической безопасности почти всегда не отмечаются, партии почти всегда принимаются, т.е. соблюдаются интересы проверяемого предприятия (в экологии), поставщика (при контроле качества). Это - зона комфортности для поставщика. Если он обеспечивает работу (уровень дефектности) в этой зоне, то его никто не потревожит.Если же входной уровень дефектности больше браковочного уровня дефектности pбр, то нарушения почти наверняка фиксируются, партия почти всегда бракуется, т.е. экологи узнают о нарушениях, потребитель оказывается защищен от попадания к нему партий со столь высоким уровнем брака. Поэтому можно сказать, что в зоне В соблюдаются интересы потребителей - брак к ним не попадает.
При выборе плана контроля часто начинают с выбора приемочного и браковочного уровней дефектности. При этом выбор конкретного значения приемочного уровня дефектности отражает интересы поставщика, а выбор конкретного значения браковочного уровня дефектности - интересы потребителя. Можно доказать, что для любых положительных чисел
и , и любых входных уровней дефектности pпp и pбр, причем pпp меньше pбр, найдется план контроля (n,c) такой, что его оперативная характеристика f(p) удовлетворяет неравенствамf(pпp) > 1 -
, f(pбр) < .При практических расчетах обычно принимают
= 0,05 (т.е. 5%) и = 0,1 (т.е. 10%).Вычислим приемочный и браковочный уровни дефектности для плана (n,0). Из формул (5) и (7) вытекает, что
(1 - pпp)n = 1 -
, pпp = 1 - (1 - )1/n.Поскольку риск поставщика
мал, то из известного соотношения математического анализавытекает приближенная формула
pпp
Для браковочного уровня дефектности имеем
pбр = 1 -
1/n.При практическом применении методов статистического приемочного контроля для нахождения приемочных и браковочных уровней дефектности планов контроля вместо формул, имеющих обозримый вид лишь для отдельных видов планов, применяют численные компьютерные алгоритмы или заранее составленные таблицы, имеющиеся в нормативно-технической документации или научно-технических публикациях.
Предел среднего выходного уровня дефектности. Обсудим судьбу забракованной партии продукции. В зависимости от ситуации эта судьба может быть разной. Партия может быть утилизирована. Например, забракованная партия гвоздей может быть направлена на переплавку. У партии может быть понижена сортность, и она может быть продана по более низкой цене (при этом результаты выборочного контроля будут использованы не для проверки того, что выдержан заданный уровень качества, а для оценки реального уровня качества). Наконец, партия продукции может быть подвергнута сплошному контролю (для этого обычно привлекают инженеров из всех заводских служб). При сплошном контроле все дефектные изделия обнаруживаются и либо исправляются на месте, либо извлекаются из партии. В результате в партии остаются только годные изделия. Такая процедура называется "контроль с разбраковкой".
При среднем входном уровне дефектности р и применении контроля с разбраковкой с вероятностью f(p) партия принимается (и уровень дефектности в ней по-прежнему равен р) и с вероятностью (1- f(p)) бракуется и подвергается сплошному контролю, в результате чего к потребителю поступают только годные изделия. Следовательно, по формуле полной вероятности средний выходной уровень дефектности равен
f1(p)= pf(p) +0(1 - f(p)) = pf(p).
Средний выходной уровень дефектности f1(p) равен 0 при р=0 и р=1, положителен на интервале (0;1), а потому достигает на нем максимума, который в теории статистического контроля называется пределом среднего выходного уровня дефектности (сокращенно ПСВУД):
ПСВУД =
Пример. Рассмотрим план (n,0). Для него f(p) = (1 - p)nи f1(p) = p(1-p)n. Чтобы найти ПСВУД, надо приравнять 0 производную среднего выходного уровня дефектности по среднему входному уровню дефектности:
В полученном уравнении корень р = 1 соответствует минимуму, а не максимуму. Поскольку непрерывная функция на замкнутом отрезке достигает максимума, то максимум достигается при
Следовательно,
ПСВУД =
(8)По выражению (8) могут быть проведены конкретные расчеты. Однако оно довольно громоздко. Его можно упростить, используя один замечательный предел из курса математического анализа, а именно:
(9)Сравнивая соотношения (8) и (9), видим, что
ПСВУД =
Первая скобка равна 1/n, а вторая согласно соотношению (9) приближается к 0,368 при росте объема выборки. Поэтому получаем простую асимптотическую формулу
ПСВУД
Для более сложных планов ПСВУД рассчитывают с помощью более или менее сложных компьютерных программ.
При рассмотрении основ статистического контроля в настоящем пункте расчетные формулы удалось получить лишь для простейших планов, в основном для планов вида (n,0). Если ослабить требования и рассчитывать не на точные формулы, а на асимптотические, при
, то можно справиться и с одноступенчатыми планами вида (n, c).Асимптотическая теория одноступенчатых планов
статистического контроля
Пусть Х - число дефектных единиц продукции в выборке объема n. Как уже отмечалось, распределение Х является биномиальным и имеет вид
Р (Х= k) = Cnk pk (1—p)n - k ,
где Cnk - число сочетаний из n элементов по k, а p - входной уровень дефектности.
Пусть используется одноступенчатый план контроля (n, c). Тогда оперативная характеристика этого плана имеет вид
Пусть
Тогда по Закону Больших Чисел теории вероятностей (по теореме Бернулли)(сходимость по вероятности). Значит, если с/n окажется заметно меньше входного уровня дефектности р, то партии будут почти всегда приниматься, а если с/n окажется заметно больше входного уровня дефектности р, то партии будут почти всегда отклоняться. Ситуация будет нетривиальной только там, где величины с/n и р близки друг к другу.
Хотя оперативная характеристика приближается с помощью сумм биномиальных вероятностей, целесообразно найти для нее приближение с помощью теоремы Муавра-Лапласа. Имеем цепочку тождественных преобразований:
Однако справа строит именно то выражение, которое участвует в теореме Муавра-Лапласа. Воспользовавшись равномерной сходимостью в этой теореме, можно записать, что
где
(х) - функция стандартного нормального распределения с математическим ожиданием 0 и дисперсией 1. Поскольку параметры в этой формуле связаны соотношениемто можно указать альтернативный вариант асимптотического выражения для оперативной характеристики: