Смекни!
smekni.com

Высшие финансово-экономические вычисления и статистический анализ информации (стр. 2 из 3)

в) обыкновенные проценты с приближенным числом дней ссуды. Такой метод применяется тогда, когда не требуется большой точности, например при промежуточных расчетах. Метод условно обозначается как 360/360.

Дисконтирование по простым ставкам

На практике часто сталкиваются с задачей, обратной наращению процентов, а именно: по заданной сумме S, которую следует уплатить через некоторое время n, необходимо определить сумму полученной ссуды Р. Такая ситуация может возникнуть, например, при разработке условий контракта или тогда, когда проценты с суммы Sудерживаются вперед, т. е. непосредственно при выдаче кредита, ссуды. В этих случаях говорят, что сумма S дисконтируется или учитывается, сам процесс удержания называют учетом, а удержанные проценты — дисконтом, или скидкой. Термин «дисконтирование» в финансовых вычислениях употребляется и в более широком смысле — как средство определения любой стоимостной величины, относящейся к будущему, на более ранний момент времени. Такой прием часто называют приведением стоимостного показателя к некоторому, обычно начальному, моменту времени.

Величину Р, найденную с помощью дисконтирования, называют современной стоимостью, или современной величиной будущего платежа S, а иногда — текущей, или капитализированной, стоимостью. Современная величина суммы денег является одним из важнейших понятий в количественном анализе финансовых операций. В большинстве случаев именно с помощью дисконтирования удобно учитывать такой фактор, как время. В зависимости от вида процентной ставки применяют два метода дисконтирования — математическое дисконтирование и банковский (коммерческий) учет. В первом случае применяется ставка наращения, во втором — учетная ставка.

Сложные проценты, формула наращения

В средне- и долгосрочных финансово-кредитных операциях, если проценты не выплачиваются сразу после их начисления, а присоединяются к сумме долга, применяют сложные проценты. База для начисления сложных процентов в отличие от простых не остается постоянной — она увеличивается с каждым шагом во времени. Абсолютная сумма начисляемых процентов возрастает, и процесс увеличения суммы долга происходит с ускорением. Наращение по сложным процентам можно представить как последовательное реинвестирование средств, вложенных под простые проценты на один период начисления. Присоединение начисленных процентов к сумме, которая послужила базой для их начисления, часто называют капитализацией процентов.

В практических расчетах применяют так называемые дискретные проценты, начисляемые за фиксированные одинаковые интервалы времени (год, полугодие, квартал и т. д.). В некоторых случаях - в доказательствах и расчетах, связанных с непрерывными процессами, в общих теоретических построениях, а иногда и на практике — возникает необходимость в применении непрерывных процентов. В этом случае проценты начисляются за бесконечно малые промежутки времени.

Пусть проценты начисляются и капитализируются один раз в году (годовые проценты). Для этого применяется сложная ставка наращения. Для записи формулы наращения применим те же обозначения, что и в формуле простых процентов:

Р — первоначальный размер долга (ссуды, кредита, капитала и т. д.);

S—наращенная сумма на конец срока ссуды; n — число лет наращения;

i— уровень годовой ставки процентов (десятичная дробь).

Очевидно, что в конце первого года проценты равны величине Pik, а наращенная сумма составит P+Pi = P(l+i).К концу второго года она достигнет величины P(l+i)+P(l+i) = P(l+i)2и т. д. В конце л-го года наращенная сумма будет равна:

S=P(l+i)ⁿ.(2)


Проценты за этот же срок в целом равны:

I=S-P=P[(1+i)ⁿ-1].

Рост по сложным процентам представляет собой процесс, следующий геометрической прогрессии, первый член которой равен Р, а знаменатель — (1+i). Последний член профессии равен наращенной сумме в конце срока ссуды.

Величину q= (1 +i)ⁿ называют множителем наращения по сложным процентам. Точность расчета множителя в практических расчетах определяется допустимой степенью округления наращенной суммы (до последней копейки, рубля и т. д.). Время при наращении по сложной ставке обычно измеряется как ACT/ ACT. Очевидно, что очень высокая (инфляционная) процентная ставка может быть применена только для короткого срока. В противном случае результат наращения окажется бессмысленным.

Банковский, или коммерческий, учет (учет векселей)

Суть операции заключается в следующем. Банк или другое финансовое учреждение до наступления срока платежа по векселю или иному платежному обязательству приобретает его у владельца по цене, которая меньше суммы, указанной на векселе, т. е. покупает (учитывает) его с дисконтом. Получив при наступлении срока векселя деньги, банк реализует процентный доход в виде дисконта. В свою очередь, владелец векселя с помощью его учета имеет возможность получить деньги хотя и не в полном объеме, однако ранее указанного на нем срока. При учете векселя применяется банковский, или коммерческий, учет. Согласно этому методу проценты за пользование ссудой в виде дисконта начисляются на сумму, подлежащую уплате в конце срока. При этом применяется учетная, или дисконтная, ставка d, которая отличается от ставки l.

Размер дисконта равен Snd; еслиdгодовая ставка, то пизмеряется в годах. Таким образом:

S(l-nd), (3)

где п — срок от момента учета до даты погашения векселя.

Дисконтный множитель здесь равен (1— nd).Из формулы (3) следует, что при n>l/d величина дисконтного множителя и, следовательно, суммы Рстанет отрицательной. Иначе говоря, при относительно большом сроке векселя учет может привести к нулевой или даже отрицательной сумме Р, что лишено смысла. Например, при d = 20% уже пятилетний срок достаточен для того, чтобы владелец векселя ничего не получил при его учете.

Учет посредством учетной ставки чаще всего осуществляется при временной базе К = 360 дней, число дней ссуды обычно берется точным, АСТ/360.

Эквивалентность процентных ставок

Как было показано ранее, для процедур наращения и дисконтирования могут применяться различные виды процентных ставок. Определим те их значения, которые в конкретных условиях приводят к одинаковым финансовым результатам. Иначе говоря, замена одного вида ставки на другой при соблюдении принципа эквивалентности не изменяет финансовых отношений сторон в рамках одной операции. Такие ставки назовем эквивалентными.

Соотношение эквивалентности можно найти для любой пары различного вида ставок — простых и сложных, дискретных и непрерывных.

Формулы эквивалентности ставок во всех случаях получим исходя из равенства взятых попарно множителей наращения. Определим соотношение эквивалентности между простой и сложной ставками. Для этого приравняем друг к другу соответствующие множители наращения:

(1+ni5)=(1+i)n,

где i5 и i — ставки простых и сложных процентов.

Приведенное равенство предполагает, что начальные и наращенные суммы при применении двух видов ставок идентичны.

Решение равенства дает следующие соотношения эквивалентности ставок:

(4) i5= (1+i)n/n-1,

i=n√1+nij-1.

Аналогичным образом можно определить соотношения эквивалентности других видов ставок, например между процентной и учетной ставками. Следует иметь в виду, что при применении этих ставок используется временная база К= 360 или К= 365 дней. Если временные базы одинаковы, то из равенства соответствующих множителей получим:

(5) is=d/1-nd,

(6) d= is/1+ni.

где п - срок в годах,

is - ставка простых процентов,

d - простая учетная ставка.

1.3 Источники статистической информации

Различают первичные и производные источники данных. Первичными являются переписи (цензы) и материалы разнообразных текущих обследований, включая наблюдения и материалы изучения общественного мнения.

Производными источниками являются материалы, публикуемые в текущих и периодических изданиях (газета «Финансовые известия», «Экономика и жизнь»), характеризующих экономическое положение России, валютные курсы, колебания цен и т.д. Наиболее распространенные производные источники статистических данных – статистические публикации. Различают текущие, ежегодные и разовые статистические публикации. В работе использовались следующие источники: Российский статистический ежегодник и Финансы России. Статистический ежегодник. Эти издания содержат итоговые, годовые показатели, характеризующие развитие различных отраслей и экономики в целом, и дают сопоставимую во времени и пространстве.


Глава 2. Аналитическая часть

2.1 Анализ динамики страховой деятельности в РФ

Сравним динамику страховой деятельности организаций в Калужской области и Московской по годам, по имеющимся данным (Приложение2).

В 1995 году уровень доходности страховых организаций в Калужской области равен: 26350/16256=1.62, а в Московской области:299770/209415=1.43;

В Калужской в 2000: 40636/13368=3.04;

в Московской:7730892/5716582=1.35;

В Калужской в 2001: 46511/11115=4.19;

в Московской:22136123/19652041=1.13

В Калужской в 2002: 57221/16053=3.57;

в Московской:18444869/15273845=1.21

В Калужской в 2003 =0;

в Московской:21240803/14032894=1.51.

В Калужской в 2004: 50644/24409=2.08;