Смекни!
smekni.com

Эконометрические методы в сельском хозяйстве (стр. 4 из 9)

Среднюю ошибку аппроксимации рассчитаем по формуле:

(7)

4. Временные ряды в эконометрических исследованиях

Эконометрическую модель можно построить, используя два типа исходных данных:

- данные, характеризующие совокупность различных объектов в определенный момент (период) времени;

- данные, характеризующие один объект за ряд последовательных моментов (периодов) времени.

Модели, построенные по данным первого типа, называются пространственными моделями. Модели, построенные по данным второго типа, называются моделями временных рядов.

Временной ряд (динамический ряд) - это совокупность значений какого-либо показателя за несколько последовательных моментов (периодов) времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

- факторы, формирующие тенденцию ряда;

- факторы, формирующие циклические колебания ряда;

- случайные факторы.

При различных сочетаниях этих факторов зависимость уровней ряда от времени может принимать разные формы.

Во-первых, большинство временных рядов экономических показателей имеют тенденцию (Т), характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. По всей видимости, эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую тенденцию.

Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям (S). Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей зависит от времени года. При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес - цикла, в которой находится экономикастраны.

Некоторые временные ряды не содержат тенденции и циклическую компоненту, а каждый следующий их уровень образуется как сумма среднего ряда и некоторой случайной компоненты (Е).

Очевидно, что реальные данные не соответствуют полностью ни одной из описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воздействием тенденции, сезонных колебаний и случайной компоненты.

Основная задача эконометрического исследования отдельного временного ряда - выявление и придание количественного выражения каждой из перечисленных выше компонент, с тем чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов. [10, с.196]

Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда и имеет следующий вид:

Y = T + S + E(8)

Модель, в которой временной ряд представлен как произведение компонент (перечисленных), называется мультипликативной и имеет вид:

Y=T*S*E(9)


4.1 Автокорреляция временного ряда

При наличии тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих значений. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Число периодов, по которым рассчитывается коэффициент автокорреляции, называется лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается.

Коэффициенты автокорреляции уровней первого порядка:

=
, (10)

Коэффициенты автокорреляции уровней ряда второго порядка:

=
, (11)


Два важных свойства коэффициента автокорреляции. Во-первых, он строится по аналогии с линейным коэффициентом корреляции и, таким образом, характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю. [9, с.224]

Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом они могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага называется коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка t, ряд содержит циклические колебания с периодичностью в t моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать предположение относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний и имеет структуру, сходную со структурой ряда, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты Т и циклической (сезонной) компоненты S. [12, с.187]

Произведем расчет коэффициентов автокорреляции уровней ряда для наших данных.

Таблица 1 – Расчет коэффициента автокорреляции первого порядка временного ряда.

t
1 1175 - - - - - -
2 1063 1175 -2311,9 -1833,9 4239747,0 5344941,9 3363077,6
3 1000 1063 -2008,9 -1945,9 3908998,1 4035556,9 3786408,4
4 710 1000 -2664,9 -2008,9 5353462,7 7101761,5 4035556,9
5 1327 710 -2047,9 -2298,9 4707885,0 4193947,8 5284801,3
6 2600 1327 -774,9 -1681,9 1303302,7 600490,2 2828685,2
7 1030 2600 -2344,9 -408,9 958763,6 5498617,2 167174,3
8 3700 1030 325,1 -1978,9 -643304,7 105681,5 3915924,8
9 4090 3700 4090,0 3700,0 15133000,0 16728100,0 13690000,0
10 3700 4090 325,1 1081,1 351461,4 105681,5 1168843,0
11 3915 3700 540,1 691,1 373270,5 291693,9 477661,3
12 4700 3915 1325,1 906,1 1200701,6 1755855,4 821072,4
13 3735 4700 360,1 1691,1 608954,0 129662,6 2859922,1
14 1624 3735 -1750,9 726,1 -1271391,2 3065696,5 527265,4
15 3394 1624 19,1 -1384,9 -26432,9 364,3 1917863,7
16 9382 3394 6007,1 385,1 2313512,0 36085093,7 148325,5
17 5848 9382 2473,1 6373,1 15761305,8 6116159,1 40616791,5
18 1464 5848 -1910,9 2839,1 -5425331,4 3651588,7 8060661,6
19 1652 1464 -1722,9 -1544,9 2661675,9 2968429,4 2386622,0
20 3471 1652 96,1 -1356,9 -130377,5 9232,7 1841095,0
21 3409 3471 34,1 462,1 15752,6 1161,9 213564,5
22 1195 3409 -2179,9 400,1 -872249,6 4752020,9 160104,4
23 5020 1195 1645,1 -1813,9 -2983973,2 2706311,1 3290122,8
24 9594 5020 6219,1 2011,1 12507395,1 38677042,6 4044645,6
Итого: 77623 69204 3741,0 3008,9 60046127,5 143925091,4 105606189,3

=
= 3374,9 (12)