Смекни!
smekni.com

Информатизация экономики: интернет и общество (стр. 5 из 8)

Формирование современных инновационных контуров включает следующие мировые технологические тренды:

- совместное использование новейших достижений генетики, информатики и нанотехнологий в здравоохранении;

- охрана природы на основе широкого распространения принципов безотходного производства в промышленности, сокращения вредных выбросов на транспорте и новых методов переработки ядерных отходов;

- обеспечение широкого круга пользователей новыми способами сбора, хранения, обработки и передачи всех видов информации в режиме реального времени; одновременно – сокращение отрыва развитых стран от бедных стран в доступе к современным инфокоммуникационным ресурсам (феномен «цифрового неравенства»);

- распространение материалов с новыми качественными характеристиками (пластмассы, текстильные волокна и металлы с заранее заданными свойствами, специальные покрытия для режущих инструментов и металлов для применения их в особо агрессивных средах и др.);

- глобальная конкуренция за установление новых отраслевых стандартов, создание базовых продуктовых платформ в производстве и потреблении по широкому спектру новых направлений технологического развития; усиление роли международных стандартов качества и экологического соответствия в организации глобальных производственно-территориальных систем.

Конвергенция технологий. В течение более четверти века информационные технологии занимали центральное место во всех прогнозах инновационного развития и реально демонстрировали не только ускоренные темпы наращивания основных технологических параметров, но и быстрый рост производства и рынков. В последние годы внимание экспертов переключилось на начавшийся процесс практически одновременного развития очень широкого спектра научных и технологических областей, в основе которого лежат принципиально новые возможности, открывшиеся с использованием конвергенции разных технологий на основе достижений, прежде всего в области информационных технологий.

Быстрое развитие и переход в стадию зрелости любой тематической области НИОКР приводит к формированию множества новых технологических направлений, которые часто взаимосвязаны или перекрывают друг друга. Данная конвергенция технологий через 20-30 лет может привести к результатам, значительно превышающим сумму эффектов каждой отдельной технологии. Именно эти результаты все чаще называют технологической революцией, отдельные элементы которой можно предугадать уже сегодня. Так, очевидно начало конвергенции нано-, био- и информационных технологий, но данными процессами взаимопроникновение различных технологий безусловно не ограничится.

Среди новых и весьма перспективных технологий, активно развивающихся в последнее время, можно выделить биоинформатику. Она сформировалась на основе синтеза молекулярной биологии, генетики, физиологии, математики, информатики, физики и химии, что определяет ее конвергентную природу и дает возможность прогнозировать появление крупных достижений в будущем. Разработки в данной области позволят значительно продвинуться в сфере здравоохранения, ветеринарии, сельского хозяйства, промышленных технологий, восстановления природных ресурсов и окружающей среды.

Методы биоинформатики позволяют не просто обрабатывать огромный массив данных о механизмах хранения, передачи и реализации биологической информации на разных уровнях: генома, клетки, взаимодействия между клетками организма, популяции в целом, но и выявлять закономерности, которые не всегда можно заметить при обычном эксперименте, предсказывать функции генов в клетке, конструировать лекарства. Сравнительно недавно в науке появился термин «биология insilico», буквальный смысл которого – «биология на кремнии», или иными словами, проведение биологического эксперимента на компьютере.

Новые разработки в биоинформатике и генетике, например, так называемая фармакогенетика (изучение взаимосвязей между болезнями, генами, протеинами и фармацевтическими средствами), дадут медицине такой инструмент лечения человека, как подбор лекарств и средств воздействия в зависимости от его генетической предрасположенности.

Одна из самых перспективных и быстро развивающихся областей биоинформатики – конструирование лекарств направленного действия, что потребует получения знаний о трехмерной структуре белка-мишени, а затем поиска низкомолекулярного вещества, которое, соединившись с белком, окажет нужное фармакологическое действие. Данный поиск связан с перебором десятков, даже сотен тысяч вариантов, и компьютерные технологии в таких разработках незаменимы.

Фармацевтическая промышленность США, расходующая на создание нового лекарства в среднем 15 лет работы и 900 тыс. долл. (за последние 10 лет этот показатель утроился), возлагает большие надежды на развитие биотехнологии, ожидая сокращения рабочего цикла не менее чем на 2 года и затрат примерно на треть уже в ближайшие 2 года. Именно науки о жизни открыли для информационных технологий новое и весьма перспективное направление для разработок и стимулирования массового спроса. По оценкам Интернэшнл Дейта Корп., уже в 2002 г. мировой рынок ИТ, специализирующихся на решении задач в области биотехнологий, составлял 14,6 млрд. долл., 51 % которого приходился на долю США. Эксперты ожидают, что данный рынок будет расти в ближайшие годы не менее чем на 19-25% ежегодно.

Перспективы нанотехнологий. В настоящее время многие специалисты в России и за рубежом полагают, что в ближайшие 10-20 лет крупные технологические нововведения будут связаны с формирующимся междисциплинарным направлением, опирающимся на применение нанотехнологий. Ожидается, что по масштабам воздействия на экономику и другие сферы жизни общества это направление может со временем встать в один ряд с информационными и биотехнологиями.

Термин «нанотехнологии» отражает в первую очередь размеры взаимодействующих между собой объектов и расстояния между ними. Нанометр - одна миллиардная часть метра, т.е. расстояние, которое в миллион раз меньше одного миллиметра. Т.е. нанотехнологии имеют дело с объектами порядка крупных молекул.

Теоретически возможность крупного технологического прорыва при переходе на этот уровень была предсказана Р. Фейнманом в 1959 г. Первым заметным шагом в этом направлении стало изобретение в 1981 г. сканирующего туннельного микроскопа учеными из швейцарского отделения корпорации IBM. Важное значение для достижения прогресса в рассматриваемом направлении имело также развитие вычислительной техники, позволяющей сегодня проводить сложнейшие модельные расчеты.

Практическое применение нанотехнологий в промышленности началось в середине 90-х гг. Сегодня основанные на них методы контроля качества поверхности используются при производстве DVD-дисков и контактных линз. Специалисты широко обсуждают многие другие приложения, которые могут оказать в перспективе сильное влияние на развитие экономики и других сфер деятельности и служат основанием для выделения крупных государственных ассигнований на проведение фундаментальных и поисковых исследований.

По мнению зарубежных экспертов, особый интерес представляют следующие перспективы.

В обрабатывающей промышленности ожидается появление возможности синтезировать в нанодиапазоне из молекул исходные конструкционные блоки контролируемого размера и собирать из них более крупные структуры с заранее заданными свойствами и функциями. Это приведет к революции в производстве материалов, в том числе к созданию материалов, не имеющих аналогов в природе. Например, ожидается создание высокопрочных покрытий для режущего инструмента и различных технологических приложений в электронике и химической промышленности.

Одним из перспективных направлений развития нанотехнологий считается создание молекулярного ассемблера – устройства, которое может выполнять функции робота по сборке из раствора молекулярных заготовок новых структур с заданными свойствами. Материалом для изготовления такого ассемблера будут служить полимерные органические молекулы. Контроль за работой ассемблера может осуществляться с помощью генерируемых управляющими компьютерами акустических сигналов, которые вызывают изменение давления инертных газов внутри устройства и тем самым направляют его действия. В дальнейшем предполагается использовать для целей управления подобными ассемблерами специальные молекулярные компьютеры.

В области наноэлектроники и компьютерных технологий может быть достигнут значительный прогресс в миниатюризации, повышении скорости и производительности приборов и устройств по обработке информации – входных датчиков, логических и запоминающих устройств передачи информации. Обсуждаются перспективы сборки с помощью нанотехнологий интегральных схем высокого уровня сложности и функциональности на основе дальнейшей миниатюризации их активных полупроводниковых элементов, а также объединения последних в трехмерные (многослойные) структуры. Возможно появление новых методов сверхточной литографии, позволяющих наносить на поверхность золота линии шириной в несколько десятков молекул.

Другие прогнозируемые прорывы могут быть связаны со снижением энергопотребления и стоимости микропроцессорных устройств, что даст возможность повысить в миллионы раз производительность компьютеров; с созданием нейрокомпьютеров, намного превосходящих по своим характеристикам лучшие образцы современной вычислительной техники; с разработкой более высокочастотных устройств связи, которые позволят увеличить полосу рабочего диапазона примерно на порядок, что будет иметь важные последствия для бизнеса, военного дела, образования и др.; с массовым производством устройств хранения информации, небольших, но в тысячи раз более емких, чем выпускаемые сегодня; с появлением наносенсорных систем для сбора, обработки и передачи больших массивов данных при малых размерах, весе и потреблении энергии; с созданием образцов беспилотных средств транспорта и военной техники, управляемых с помощью высокопроизводительных компьютеров.