Смекни!
smekni.com

Основные понятия статистики (стр. 11 из 13)

По заданному уровню значимости α находят значение нижнего предела

=

Так, например, при α = 0.05 из графика (Рис. 1.) определяем

= 7.814

Рис. 1.

Рис. 2.

Критерий Фишера. Проверка гипотезы о равенстве дисперсий.

Задача проверки «статистического» равенства дисперсий в двух выборках играет в математической статистике большую роль, т.к. именно дисперсия определяет такие исключительные важные конструктивные и технологические и экономические показатели, как точность машин и приборов, погрешность измерительных методик, точность технологических процессов, состояние экономической конъюнктуры. и т.д.

В качестве критерия F(критерий Фишера) для проверки гипотезы о равенстве дисперсий в двух генеральных совокупностях по независимым выборкам из них строится случайная величина, равная отношению двух «исправленных» дисперсий , предполагая, что генеральная совокупность распределена нормально.

Доказано, что эта случайная величина имеет распределение Фишера с к1 = n1 – 1 и k2 = n2 – 1 степенями свободы, где n1 и n2 – объёмы первой и второй выборок. Обычно в качестве числителя берут большую из «исправленных» дисперсий

.

Чтобы проверить гипотезу о равенстве дисперсий, надо построить критическую область для критерия F. В качестве критической области принимаются два интервала: интервал больших значений критерия, удовлетворяющий неравенству F >F2 и интервал малых значений 0 < F < F1, причём критические точки занимают такое положение на оси критерия, чтобы удовлетворять следующим равенствам:

где

– площади под кривой распределения (см. Рис.3).

Такой выбор критической области обеспечивает большую чувствительность критерия. Оказывается, что достаточно определить правую критическую точку F2; последнее объясняется тем, что если величина

имеет распределение Фишера ( с k1 и k2 степенями свободы), то и

также имеет распределение Фишера (с k1 и k2 степенями свободы). Поэтому в таблицах табулируются только правые точки этого распределения.

Если полученное по выборке значение критерия выходит за правую критическую точку F2, гипотезу о равенстве дисперсий следует отбросить, в противном случае гипотеза о равенстве дисперсий не противоречит наблюдениям.

Пример. При проведении тестирования на профессиональную пригодность были подвергнуты испытанию две группы: в первой группе – 10 человек, во второй группе – 15 человек. По данным этих тестов были посчитаны «исправленные» эмпирические дисперсии, оказавшиеся равными для первой группы

и для второго
. Требуются проверить с уровнем значимости α=0,1 гипотезу о равенстве дисперсий – уровнем подготовленности.

Р е ш е н и е.

Вычислим выборочное значение критерия

F=

По таблицам распределения Фишера и при α = 0,05 и степенях свободы k1 = n1 –1 = 9 и k2 = n2 –1 = 14 находим критическую точку F2 = 2,65. Выборочное значение критерия оказалось меньше критического, и, следовательно, предположение о равенстве дисперсий не противоречит наблюдениям. Иными словами, нет оснований считать, что две группы

обладают разным уровнем подготовленности.

Пример. Оценивается валидность двух различных однотипных тестов. Подвергаются испытанию одна и та же группа с составе 20 человек. По данным тестирования были вычислены исправленные дисперсии, они оказались равными:

,
.

Определить валидность однотипных тестов.

Р е ш е н и е.

Вычисляем выборочное значение критерия

По таблицам распределения Фишера и при α = 0,05 и степенях свободы k1 = n1 –1 = 19 и k2 = n2 –1 = 19 находим критическую точку F2 = 2,16. Таким образом, выборочное значение критерия попадает в критическую область и гипотезу о равенстве дисперсий следует отбросить, т.е. по данным двух выборок испытуемых валидность тестов существенно отличается друг от друга.

Критерий Пирсона χ2. Проверка гипотез о законе распределений .

В предыдущем параграфе были рассмотрены некоторые способы оценки параметров заранее известного закона распределения. Однако в ряде случае сам вид закона распределения является гипотетическим и нуждается в статистической проверке. Гипотезы о виде закона распределения выдвигаются на основе результатов построения эмпирических функций распределения или гистограмм.

Рассмотрим вопрос о критерии проверки по данным выборки гипотезы о том, что данная случайная величина Х имеет функцию распределения F(х). Необходимо ввести некоторую случайную величину- критерий К, основанный на выборе определённой меры расхождения эмпирического и теоретического распределений. Наиболее распространённым является критерий Пирсона χ2 (хи-квадрат). Суть критерия Пирсона состоит в следующем.. Область изменения случайной величины разбивается на конечное число интервалов:

Δх1, Δx2, …. Δxl(если это вся числовая ось, то первый и последний l-ый интервал будут бесконечными). Пусть mi – число значений выборки n, попавших в интервал Δхi , а pi – вероятность того, что случайная величина Х примет значения, принадлежащие Δхiпри данном распределении F(x). Эта вероятность pi вычисляется по известным соотношениям:

где xi и xi+1 – начальная и конечная точка интервала Δхi. Очевидно, выполняются условия


По найденным pi находим математические ожидания попаданий случайной величины Х в интервал Δхi. при n испытаниях, которые равны npi. В качестве меры расхождения выборочных m1, m2, ….mlи теоретических np1,np2,….nplхарактеристик вводится следующая величина:

Доказано, что введенная таким образом случайная величина при неограниченном увеличении nраспределена по закону

с r степенями свободы, где r = l – 1 – k, а k равно числу параметров, оцениваемых по данным выборке. Если все параметры закона распределения известны заранее (не на основе выборки!, например, при равномерном распределении), то к = 0. Остаётся , задавшись определённым уровнем значимости α , указать критическую область критерия. Обозначим
число, найденное из условия

В качестве критической области примем интервал

.Определив
по данным выборки, мы получим одно из двух: или
(т.е. выборочное значение критерия попадает в критическую область и тогда расхождение выборочных данных с гипотетическим законом распределения существенно, а поэтому гипотеза H0 отвергается и принимается гипотеза H1. Если
, то отличие эмпирического закона от теоретического считается несущественным и принимается гипотеза H0 о статистическом равенстве эмпирического и теоретического законов распределения.