Смекни!
smekni.com

Основные понятия статистики (стр. 12 из 13)

Замечание. Случайная величина – критерий

, вычисленная по выборочным данным, только при n →∞ распределена по закону
. Возникает естественный вопрос о правомерности использования этого распределения при конечном n. Принято считать это приближение достаточным для практических расчетов, если для всех интервалов npi
10.Если же имеются интервалы, для которых npi <10, то рекомендуется их объединять с соседними так, чтобы новые интервалы уже удовлетворяли указанному условию.

Пример. Имеются опытные данные о числе звонков в службу аварийного помощи в течение рабочего дня – таблица 1.

Интервалы (часы смены) 1 2 3 4 5 6 7 8
Число звонков 16 27 17 15 24 19 11 15

Проверить с помощью критерия Пирсона и при уровне значимости α = 0,05 гипотезу о равномерном распределении числа звонков в психологическую службу в течение дня.

Решение. Постоим эмпирическую функцию плотности распределения вызовов. Рис.4.

Рис.4


Приведённый рисунок позволяет выдвинуть гипотезу о равномерном распределении звонков в службу психологической помощи, т.к. плотность звонков колеблется около некоторого среднего значения.

В качестве интервалов Δхiберём соответствующие часы смены. Так как предполагается оценивать равномерное распределение, то все pi =
и npi =144·
= 18. Результаты дальнейших расчётов сводим в таблицу 2.

Таблица 2.

Интервалы (часы смены) 1 2 3 4 5 6 7 8
Число звонков mi 16 27 17 15 24 19 11 15
Математические ожидания npi 18 18 18 18 18 18 18 18
mi - npi -2 9 -1 -3 6 1 -7 -3
0.22 4.5 0.06 0.5 2.00 0.06 2.72 0.5

Σ =10.56

Число степеней свободы равно r = l – 1 – k = 7 ( k = 0, т.к. единственный параметр распределения – рабочее время смены , т.е. длина отрезка b-a– заранее известно). При данном уровне значимости α = 0,05 по таблице находим соответствующее значение

=14,07. Вычисленное значение
= 10,56 лежит левее критического значения, т.е. в области допустимых значений, и поэтому нет оснований считать гипотезу H0 о равномерном распределении противоречащей наблюдениям.

Пример. Имеются результаты опроса группы молодёжи, состоящей из 200 человек, о возрасте первого употреблении наркотиков. Результаты представлены в виде интервального вариационного ряда (Таблица 1.):


Таблица 1.

Интервал возрастов 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21
Количество человек в группе 7 12 14 25 48 42 24 13 10 5

Требуется с помощью критерия Пирсона и при уровне значимости α = 0,05 оценить гипотезу о нормальном распределении возрастов начала употребления наркотиков, тем самым подтвердив гипотезу, что явление наркомании порождено множеством различных причин.

Решение. Построим экспериментальную функцию плотности распределения распределение. Поскольку вариационный ряд интервальный следует перейти к серединам интервалов и заменить абсолютные частоты – частотами относительными. В результате получим (Таблица 2; Рис 2):

Таблица 2.

Середины интервалов 11,5 12,5 13,5 14,5 15,5 16,5 17,5 18,5 19,5 20,5
Относительные частоты 0,035 0,06 0,07 0,125 0,24 0,21 0,12 0,065 0,05 0,025
Рис.5

Полученная кривая имеет колоколообразную форму, поэтому есть основания к выдвижению гипотезы о нормальном распределении возрастов начала употребления наркотиков.

Результаты вычислений сведем в таблицу 3.

Таблица 3.

№ интервала Границы интервала x*i mi νi pi npi
1 11,12 11,5 7 0.035 0,0187 3,7383 2,8458
2 12,13 12,5 12 0.06 0,0485 9,6940 0,5486
3 13,14 13,5 14 0.07 0,0984 19,6702 1,6345
4 14,15 14,5 25 0.125 0,1562 31,2318 1,2435
5 15,16 15,5 48 0.24 0,1940 38,8031 2,1798
6 16,17 16,5 42 0.21 0,1886 37,7239 0,4847
7 17,18 17,5 24 0.12 0,1435 28,6978 0,7690
8 18,19 18,5 13 0.065 0,0854 17,0829 0,9758
9 19,20 19,5 10 0.05 0,0398 7,9571 0,5245
10 20,21 20,5 5 0.025 0,0145 2,9002 1,5203

Сумма: 12,72645

Среднее значение возраста, впервые употребляющие наркотики, равно 15,885

Подправленная дисперсия возрастов, впервые употребляющих наркотики, равна 4,077. Стандартное отклонение возрастов, впервые употребляющих наркотики, равно 2,019

Полученные характеристики позволяют с помощью таблиц гауссовой кривой вычислить вероятности средних возрастов, впервые употребляющих наркотики. Результаты вычислений представлены на рисунке 6. Графики экспериментальных относительных частот и теоретических вероятностей практически совпали друг с другом из-за масштабирования. Чтобы показать существующее расхождение между теоретическим и экспериментальным распределением построим графики абсолютных частот средних значений возрастов – рисунок 7.

Рис.6

Рис.7.

Вычислим значение критерия – случайной величины χ2. Оно равно сумме значений последнего столбца таблицы - 12,726. Критическое значение χ2 при уровне значимости 0,05 и степенях свободы, равных r = 10 – 1 – k = 10 – 1 – 2 = 7 , определяется значением 14,067. Таким образом, нет оснований отвергать гипотезу H0 о нормальном законе распределения возрастов лиц, впервые употребляющих наркотические вещества, тем самым мы подтверждаем экспериментально мнение специалистов, что проблема наркомании имеет комплексный характер.


Контрольные вопросы:

1 Дайте определение точечной и интервальной оценке.

Сформулируйте основные требования к точечным оценкам и раскройте их смысл

Дайте определения уровню значимости, ошибки первого и второго рода.

4. Для вариационного ряда Темы 2.1. найти точечные оценки параметров нормального закона распределения, записать соответствующую формулу для плотности вероятностей f(x) и рассчитать теоретические относительные частоты. Построить график плотности распределения на гистограмме относительных частот, а теоретические относительные частоты показать на полигоне относительных частот.

5. Найти интервальные оценки параметров нормального закона распределения, приняв доверительную вероятность = 0,95 и 0,99.

6. Проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности с эмпирическим распределением выборки, используя критерий Пирсона при уровнях значимости 0,01; 0,05.


Тема 2.3. Статистические методы обработки экспериментальных данных

1. Метод наименьших квадратов (МНК).

2. Регрессионный анализ

3. Корреляционный анализ

Конспект лекции

Уравнение парной линейной корреляционной связи называется уравнением парной регрессии и имеет вид:

у = а + bх, (1)

где у - среднее значение результативного признака при определенном значении факторного признака х;

а - свободный член уравнения;

b - коэффициент регрессии, измеряющий среднее отношение отклонения результативного признака от его средней величины к отклонению факторного признака от его средней величины на одну единицу его измерения - вариация у, приходящаяся на единицу вариации х.

Уравнение (1) определяется по данным о значениях признаков х и у в изучаемой совокупности, состоящей из п единиц. Параметры уравнения а и b находятся методом наименьших квадратов (МНК).