1) из-за ошибок наблюдения;
2) вследствие случайного стечения различных обстоятельств, каждый из которых в отдельности несущественный, но совокупное их влияние привело к таким резко выделяющимся от общей картины значениям признаков;
3) как следствие нарушения однородности изучаемой совокупности.
В общем случае все значения изучаемых признаков фиксируются по известным единицам совокупности по их части, отобранной с учетом всех требований. Следовательно, первичные статистические данные, включая и резко «выделяющемся», соответствуют конкретным случаям проявления изучаемого явления.Следовательно, субъективное отбрасывание «выделяющихся» единиц недопустимо.
Рассмотрим использование критериев для проверки статистических гипотез на примере закона нормального распределения. Закон нормального распределения лежит в основе многих теорем и методов статистики
- при оценке репрезентативности выборки (расчете ошибки выборки и распространении характеристик выборки на генеральную совокупность);
- измерении степени тесноты связи и составлении модели регрессии;
- построении и использование статистических критериев и др.
Как показывают многочисленные статистические исследования, частоты (частости) эмпирических распределений за редким исключением будут отличаться от значений теоретического распределения. Расхождения между частотами (частостями) эмпирического и теоретического распределения могут быть несущественными и объяснены случайностями выборки и существенными при несоответствии выбранного и эмпирического законов распределения.
Для проверки гипотезы о соответствии эмпирического распределения теоретическому закону нормального распределения используются особые статистические показатели-критерии согласия (или критерии соответствия). К ним относятся критерии К.Пирсона, А.Н. Колмогорова, Романовского, Ястремского и др.
Большинство критериев согласия базируется на использовании отклонений эмпирических частот от теоретических. Очевидно, что чем больше эти отклонения, тем хуже теоретическое распределение соответствует эмпирическому. Статистические характеристики таких критериев согласия являются некоторыми функциями этих отклонений.
1.3. Основные принципы расчета критериев для проверки статистических гипотез
Проверка каждого типа статистических гипотез осуществляется с помощью соответствующего критерия, являющегося наиболее мощным для в каждом конкретном случае. Например, проверка гипотезы о виде закона распределения случайной величины может быть осуществлена с помощью критерия согласия Пирсона 2; проверка гипотезы о равенстве неизвестных значений дисперсий двух генеральных совокупностей - с помощью критерия Фишера F; ряд гипотез о неизвестных значениях параметров генеральных совокупностей проверяется с помощью критерия Z- нормальной распределенной случайной величины и критерия t-Стьюдента и т. д.
Значение критерия, рассчитываемое по специальным правилам на основании выборочных данных, называется наблюдаемым значением критерия (Кнабл.).
Значения критерия, разделяющие совокупность значений критерия на область допустимых значений (наиболее правдоподобных в отношении нулевой гипотезы Н0) и критическую область (область значений, менее правдоподобных в отношении нулевой гипотезы Н0), определяемые на заданном уровне значимости а по таблицам распределения случайной величины К, выбранной в качестве критерия, называются критическими точками (Ккр).
Областью допустимых значений (областью принятия нулевой гипотезы Н0) называют совокупность значений критерия К, при которых нулевая гипотеза Н0 не отклоняется.
Критической областью называют совокупность значений критерия К, при которых нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.
Различают одностороннюю (правостороннюю или левостороннюю) и двустороннюю критические области.
Если конкурирующая гипотеза - правосторонняя, например, Н1: а > а0, то и критическая область правосторонняя (рисунок 1). При правосторонней конкурирующей гипотезе критическая точка (Ккр.п) принимает положительные значения.
Рисунок 1
Если конкурирующая гипотеза - левосторонняя, например, Н1: а < а0, то и критическая область - левосторонняя (рисунок 2). При левосторонней конкурирующей гипотезе критическая точка принимает отрицательные значения (Ккр.л).
Рисунок 2.
Если конкурирующая гипотеза - двусторонняя, например, Н1: а=а0, то и критическая область - двусторонняя (рисунок 3). При двусторонней конкурирующей гипотезе определяются 2 критические точки (Ккр.л и Ккр.п).
Рисунок 3
Основной принцип проверки статистических гипотез состоит в следующем:
- если наблюдаемое значение критерия (Кнабл) принадлежит критической области, то нулевая гипотеза Н0 отклоняется в пользу конкурирующей;
- если наблюдаемое значение критерия (Кнабл) принадлежит области допустимых значений, то нулевую гипотезу Н0 нельзя отклонить.
Можно принять решение относительно нулевой гипотезы Н0 путем сравнения наблюдаемого (Кнабл) и критического значений критерия (Ккр).
При правосторонней конкурирующей гипотезе:
- если Кнабл < Ккр, то нулевую гипотезу Н0 нельзя отклонить;
- если Кнабл > Ккр, то нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.
При левосторонней конкурирующей гипотезе:
- если Кнабл >- Ккр, то нулевую гипотезу Н0 нельзя отклонить;
- если Кнабл < - Ккр, то нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.
При двусторонней конкурирующей гипотезе:
- если - Ккр< Кнабл< Ккр, то нулевую гипотезу Н0 нельзя отклонить;
- если Кнабл > Ккр или Кнабл < -Ккр, то нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.
Алгоритм проверки статистических гипотез сводится к следующему:
1) сформулировать нулевую Н0 и альтернативную Н1 гипотезы;
2) выбрать уровень значимости ;
3) в соответствии с видом выдвигаемой нулевой гипотезы Н0 выбрать статистический критерий для ее проверки, т.е. - специально подобранную случайную величину К точное или приближенное распределение которой заранее известно;
4) по таблицам распределения случайной величины К, выбранной в качестве статистического критерия, найти критическое значение К (критическую точку или точки);
5) на основании выборочных данных по специальному алгоритму вычислить наблюдаемое значение критерия Кнабл;
6) по виду конкурирующей гипотезы Н1 определить тип критической области;
7) определить, в какую область (допустимых значений или критическую) попадает наблюдаемое значение критерия Кнабл, и в зависимости от этого -принять решение относительно нулевой гипотезы Н0.
Следует заметить, что даже в том случае, если нулевую гипотезу Н0 нельзя отклонить, это не означает, что высказанное предположение о генеральной совокупности является единственно подходящим: просто ему не противоречат имеющиеся выборочные данные, однако таким же свойством наряду с высказанной могут обладать и другие гипотезы.
Можно интерпретировать результаты проверки нулевой гипотезы следующим образом:
- если в результате проверки нулевую гипотезу Н0 нельзя отклонить, то это означает, что имеющиеся выборочные данные не позволяют с достаточной уверенностью отклонить нулевую гипотезу Н0, вероятность нулевой гипотезы Н0 больше, а конкурирующей Н1 – меньше 1 - ;
- если в результате проверки нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1, то имеющиеся выборочные данные не позволяют с достаточной уверенностью принять нулевую гипотезу Н0, вероятность нулевой гипотезы Н0 меньше, а конкурирующей Н1 – больше 1 -.
Глава 2. Проверка различных типов статистических гипотез
2.1 Проверка гипотезы о законе распределения генеральной совокупности с использованием критерия Пирсона
Использование этого критерия основано на применении такой меры (статистики) расхождения между теоретическим F(x) и эмпирическим распределением Fn(x), которая приближенно подчиняется закону распределения. Гипотеза Н0 о согласованности распределений проверяется путем анализа распределения этой статистики. Применение критерия требует построения статистического ряда. (Приложение 1).
Пример 1. В 7 случаях из 10 фирма-конкурент компании «А» действовала на рынке так, как будто ей заранее были известны решения, принимаемые фирмой «А». На уровне значимости 0,05 определите, случайно ли это, или в фирме «А» работает осведомитель фирмы-конкурента?
Решение. Для того чтобы ответить на поставленный вопрос, необходимо проверить статистическую гипотезу о том, совпадает ли данное эмпирическое распределение числа действий фирмы-конкурента с равномерным теоретическим распределением?
Если ходы, предпринимаемые конкурентом, выбираются случайно, т. е. в фирме «А» – нет осведомителя (инсайдера), то число «правильных» и «неправильных» ее действий должно распределиться поровну, т. е. по 5 (10/2), а это и есть отличительная особенность равномерного распределения.