Смекни!
smekni.com

Процесс и критерии проверки статистических гипотез (стр. 5 из 7)

Ответ. По имеющимся хронометрическим данным на уровне значимости а = 0,01 нельзя отклонить гипотезу о том, что среднее время выполнения этой операции соответствует норме. Следовательно, жалобы работниц - необоснованны.

Наблюдаемое значение критерия попадает в область допустимых значений (рисунок 4), следовательно, нет оснований отклонить нулевую гипотезу.

Рисунок 4

б) Для решения данной задачи необходимо проверить гипотезу о том, что неизвестная генеральная средняя нормальной совокупности точно равна определенному числу, когда дисперсия генеральной совокупности неизвестна.

Алгоритм решения задачи будет тот же, что и в первом случае. Однако наблюдаемое значение tнабл рассчитывается по формуле

где X - выборочная средняя; а0 - числовое значение генеральной средней; выб - выборочное среднее квадратическое отклонение; n- объем выборки.

Найдем наблюдаемое значение (tнабл)

Критическое значение (tкр) следует находить находить по таблице распределения Стьюдента (приложение 2) по уровню значимости а и числу степеней свободы k.

tнабл < tкр, следовательно, на данном уровне значимости нет оснований отвергнуть нулевую гипотезу, жалобы работниц - необоснованны.

Ответ. По имеющимся хронометрическим данным на уровне значимости а = 0,01 нельзя отклонить гипотезу о том, что среднее время выполнения этой операции соответствует норме, жалобы работниц - необоснованны.

2.3 Проверка гипотезы о законе распределения генеральной совокупности с использованием функции Лапласа

Пример. Экономический анализ труда предприятий отрасли позволил выдвинуто гипотезу о наличии 2 типов предприятий с различной средней величиной показателя производительности труда. Выборочное обследование 42 предприятий 1-й группы дало следующие результаты: средняя производительность труда X – 119 деталей. По данным выборочного обследования, на 35 предприятиях 2-й группы средняя производительность труда Y – 107 деталей. Генеральные дисперсии известны: D(Х) = 126,91 (дет.2); D(Y) = 136,1 (дет.2).

Считая, что выборки извлечены из нормально распределенных генеральных совокупностей X и Y, на уровне значимости 0,05, проверьте, случайно ли полученное различие средних показателей производительности труда в группах или же имеются 2 типа предприятий с различной средней величиной производительности труда.

Решение. Для решения данной задачи необходимо сравнить 2 средние нормально распределенных генеральных совокупностей, генеральные дисперсии которых известны (большие независимые выборки). В данной задаче речь идет о больших выборках, так как nх = 42 и nу = 35 больше 30. Выборки – независимые, так как из контекста задачи видно, что они извлечены из непересекающихся генеральных совокупностей.

Сформулируем нулевую и конкурирующую гипотезы согласно условию задачи.

Н0: X = Yгенеральные средние 2 нормально распределенных совокупностей с известными дисперсиями равны (применительно к условию данной задачи предприятия 2 групп относятся к одному типу предприятий: средняя производительность труда в 2 группах одинакова).

Н1: X≠Y- генеральные средние 2 нормально распределенных совокупностей с известными дисперсиями неравны (применительно к условию данной задачи - предприятия 2 групп относятся к разному типу предприятий: средняя производительность труда в 2 группах неодинакова).

Выдвигаем двустороннюю конкурирующую гипотезу, так как из условия задачи не следует, что необходимо выяснить больше или меньше производительность труда в одной из групп предприятий по сравнению с другой.

Поскольку конкурирующая гипотеза двусторонняя, то и критическая область двусторонняя.

В качестве критерия для сравнения 2 средних генеральных совокупностей, дисперсии которых известны (большие независимые выборки), используется случайная величина Z.

Его наблюдаемое значение (Zнабл) рассчитывается по формуле

где X выборочная средняя для X; Y выборочная средняя для Y; 1>(Х) генеральная дисперсия для X; D(Y) генеральная дисперсия для Y; пх объем выборки для X; пу объем выборки для Y.

Найдем наблюдаемое значение (zнабл):

Так как конкурирующая гипотеза - двусторонняя, критическое значение (zкр) следует находить по таблице функции Лапласа (приложение 3) из равенства

Ф(zкр)= (1)

По условию = 0,05.

Отсюда

Ф0(zкр)=(1-0,05) /2 = 0,475.

По таблице функции Лапласа (приложение 3) найдем, при каком (zкр) Ф0(zкр)=0,475.


Ф0(1,96) = 0,475.

Учитывая, что конкурирующая гипотеза - двусторонняя, находим две критические точки:

zкр(n) = 1,96; zкр(л) = -1,96

Заметим, что при левосторонней конкурирующей гипотезе Н1: X < Yzкр следует находить по таблице функции Лапласа (приложение 3) из равенства Ф0(zкр) = (1 - 2)/2 и присваивать ему знак «минус».

При правосторонней конкурирующей гипотезе Н1: X > Yzкр находим по таблице функции Лапласа (приложение 3) из равенства Ф0(zкр) = (1 - 2)/2.

Zнабл > zкр, следовательно, на данном уровне значимости нулевая гипотеза отвергается в пользу конкурирующей. На уровне значимости = 0,05 можно утверждать, что полученное различие средних показателей производительности труда в группах неслучайно, имеются 2 типа предприятий с различной средней величиной производительности труда.

Наблюдаемое значение критерия попадает в критическую область (рисунок 5), следовательно, нулевая гипотеза отклоняется в пользу конкурирующей.

Рисунок 5

Ответ. На уровне значимости = 0,05 можно утверждать, что полученное различие средних показателей производительности труда в группах неслучайно, имеются 2 типа предприятий с различной средней величиной производительности труда.


2.4 Проверка гипотезы о законе распределения генеральной совокупности с использованием критерия Фишера-Снедекора

Пример. Предполагается, что применение нового типа резца сократит время обработки некоторой детали. Хронометраж времени обработки 9 деталей, обработанных старым типом резцов, дал следующие результаты: среднее время обработки детали X – 57 мин, исправленная выборочная дисперсия s2х = 186,2 (мин2). Среднее время обработки 15 деталей, обработанных новым типом резцов, - Y по данным хронометражных измерений - 52 мин, а исправленная выборочная дисперсия s2х = 166,4 (мин2). На уровне значимости = 0,01 ответьте на вопрос, позволило ли использование нового типа резцов сократить время обработки детали?

Решение. Для решения данной задачи необходимо сравнить 2 средние нормально распределенных генеральных совокупностей, генеральные дисперсии которых неизвестны, но предполагаются одинаковыми (малые независимые выборки). В этой задаче речь идет о малых выборках, так как nх = 9 и nу = 15 меньше 30. Выборки - независимые, поскольку из контекста задачи видно, что они извлечены из непересекающихся генеральных совокупностей.

Сформулируем нулевую и конкурирующую гипотезы согласно условию задачи.

Н0:X = Y- генеральные средние 2 нормально распределенных совокупностей с неизвестными дисперсиями (но предполагаемыми одинаковыми) равны (применительно к условию данной задачи -среднее время, затрачиваемое на обработку детали резцами нового и старого типа, - одинаково, т. е. использование нового типа резца не позволяет снизить время на обработку детали).

Н1: X > Y- генеральная средняя для X больше, чем генеральная средняя для Y (применительно к условию данной задачи - среднее время, затрачиваемое на обработку детали резцами старого типа, больше, чем - нового, т. е. использование нового типа резца позволяет снизить время на обработку детали).

Так как конкурирующая гипотеза - правосторонняя, то и критическая область - правосторонняя.

Приступать к проверке гипотезы о равенстве генеральных средних 2 нормально – распределенных совокупностей с неизвестными дисперсиями можно лишь в том случае, если генеральные дисперсии равны. В противном случае, данная задача в теории неразрешима.

Поэтому, прежде чем проверять эту гипотезу, проверим гипотезу о равенстве генеральных дисперсий нормальных совокупностей.

Сформулируем нулевую и конкурирующую гипотезы, согласно условию задачи.

Н0: D(Х)=D(Y) - генеральные дисперсии 2 нормально распределенных совокупностей равны.

Н0: D(Х) >D(Y) - генеральная дисперсия для X больше генеральной дисперсии для У. Выдвигаем правостороннюю конкурирующую гипотезу, так как исправленная выборочная дисперсия для X значительно больше, чем исправленная выборочная дисперсия для Y.

Так как конкурирующая гипотеза - правосторонняя, то и критическая область - правосторонняя.

В качестве критерия для сравнения 2 дисперсий нормальных генеральных совокупностей используется случайная величина Р - критерий Фишера-Снедекора (приложение 4).

Его наблюдаемое значение (fнабл) рассчитывается по формуле


где s- большая (по величине) исправленная выборочная дисперсия; s2 - меньшая (по величине) исправленная выборочная дисперсия.