Qз = Qн.к + Qa.д + Qв.к, (3.29)
де Qн.к – реактивна потужність конденсаторних установок (КУ) споживача з напругою конденсаторів до 1кВ, квар.
QСД– реактивна потужність одержувана від СД, квар;
Qв.к – реактивна потужність КУ споживача з напругою конденсаторів понад 1кВ, квар.
При застосуванні на компресорній станції СД визначення структури складу та потужності двох окремих складових компенсуючого пристрою підприємства (Qн.к і Qв.к) виконано в послідовності, як це записано в формулі (3.29).
Визначення потужності конденсаторних установок з номінальною напругою конденсаторів до 1 кВ
Потужність цих КУ визначається при розрахунках систем внутрішнього електропостачання. Максимальна реактивна потужність, яку доцільно передавати через трансформатор 10/0,4 кВ у мережу напругою до 1 кВ для забезпечення бажаного коефіцієнта його завантаження
, становить , квар, (3.30)де N– кількість трансформаторів ТП, шт.;
Sном. – повна номінальна потужність трансформатора ТП, кВА;
Рр.3– розрахункова активна потужність навантаження на III рівні електропостачання (розрахункова активна потужність об’єкта Рр.о з таблиці 3.3), кВт.
Якщо під коренем величина зі знаком "мінус", то приймають QТ = 0.
Потужність КУ із конденсаторами номінальною напругою до 1 кВ визначено як:
Qн.к = Qр.т – Qт, (3.31)
де Qр.т. – розрахункова реактивна потужність на III рівні електропостачання, яка дорівнює розрахунковій реактивній потужності об’єкта Qр.оз таблиці 3.3, квар.
, квар; , квар.Розрахунки для вибору номінальної потужності конденсаторів номінальною напругою 0,4 кВ для цехових ПС наведені в таблиці 3.7.
Таблиця 3.7 – Визначення потужності комплектних конденсаторних установок
№об’єкта | Qт, квар | Qн.к, квар | Тип і номінал | Потужність, квар | Кількість ККУ |
1 | 815 | 719 | УКРП 0,4-360-40У3 | 360 | 2 |
2 | 434 | 607 | УКРП 0,4-300-20У3 | 300 | 2 |
3 | 0 | 744 | УКРП 0,4-375-25У3 | 375 | 2 |
4 | 281 | 740 | УКРП 0,4-375-25У3 | 375 | 2 |
5 | 707 | 34 | УКРП 0,4-25-5У3 | 25 | 2 |
6 | 905 | 442 | УКРП 0,4-475-40У3 | 475 | 1 |
7 | 148 | 201 | УКРП 0,4-100-10У3 | 100 | 2 |
Визначення потужності конденсаторних установок з номінальною напругою конденсаторів 10,5 кВ
Потужність цих КУ визначено при розрахунках систем електропостачання за формулою:
Qв.к = ΣQк.н- Σ Qн.к.ст, (3.32)
де ΣQн.к.ст– сумарна потужність встановлених низьковольтних ККУ.
, кварДля застосування приймається найближча стандартна величина потужності ККУ Qн.к.ст що вибрана зі спеціальної технічної літератури. Кількість ККУ повинна бути парною. Обираємо УКЛ -10,5-450У3.
3.6 Розробка схеми електропостачання авіаційного заводу
Схема електропостачання показує зв'язок між ДЖ та споживачами електроенергії авіаційного заводу.
Питання живлення електроенергією аеропортів вирішуються проектними організаціями разом з енергосистемою, залежно від необхідної споживаної електроенергії, особливостей технології авіаційного заводу, перспектив розвитку електропостачання даного району та інших факторів.
Крім того, схема живлення авіаційного заводу також залежить від відстані до ДЖ, загальної схеми електропостачання даного району, величини необхідної потужності з урахуванням її зростання, територіального розміщення навантажень, необхідного ступеня надійності електропостачання, наявності в авіаційного заводу власного ДЖ –теплоелектроцентралі (ТЕЦ).
Радіальні схеми розподільних мереж напругою 6-10 кВ
Радіальні схеми – це такі схеми, в яких електроенергія від ДЖ (ГПП, ПГВ, ЦРП, РП) передається до цехових ТП або до окремих ЛЕП напругою понад 1 кВ окремою лінією без відгалуження для живлення інших споживачів.
Радіальні схеми слід застосовувати при навантаженнях, розташованих у різних напрямках від ДЖ. Найбільш поширеними є одно- та двоступеневі схеми.
Одноступеневі радіальні схеми краще застосовувати на невеликих аеродромах і на великих аеродромах для живлення потужних зосереджених навантажень (компресорні та насосні станції, Авто ТЕЧ, Авіо ТЕЧ та ін.).
Перевагою радіальних схем є висока надійність електропостачання. Так, вихід із ладу однієї лінії не впливає на роботу споживачів, що живляться від інших ліній.
Основним недоліком радіального живлення однотрансформаторних ПС є втрата живлення всіма ЕП у разі відсутності резервування, наприклад, при КЗ в живильній лінії ТП1 чи в самому трансформаторі ТП1. Тому радіальне живлення аеродромних однотрансформаторних ПС залежно від конкретних вимог (категорії всіх ЕП, необхідного відсотка резервування, розташування ПС, схем та виконання аеродромних мереж та ін.) потребує резервування, яке здійснюється за такими схемами [11] з:
- резервною перемичкою на боці ВН між сусідніми ТП;
- резервною магістраллю ВН;
- резервним радіусом ВН;
- резервною кабельною перемичкою на боці НН між сусідніми ТП;
- резервною шинною перемичкою між кінцями двох магістралей НН одного об’єкта в разі застосування схеми БТМ.
Живлення ТП, що взаємно резервуються, слід здійснювати від різних секцій ГПП, ПГВ, ЦРП, РП.
Радіальне живлення аеродромних двотрансформаторних ПС необхідно здійснювати від різних секцій РП, як правило, окремими лініями для кожного трансформатора. Кожна лінія і трансформатор мають бути розраховані на покриття усіх навантажень 1-ї та основних навантажень 2-ї категорій даної ПС у післяаварійному режимі.
Двоступеневі радіальні схеми застосовують на великих і середніх аеродромах з цехами (групами об’єктів авіаційного заводу), які розташовані на великій території. Живлення розташованих поруч одно та двотрансформаторних ПС без шин ВН та ЕП з напругою понад 1 кВ здійснюється від проміжних РП, що живляться від ГПП радіальними лініями першого ступеня. При цьому всі комутаційні та захисні апарати розміщуються на РП. На аеродромних ТП передбачається глухе приєднання трансформаторів до радіальних ліній другого ступеня. Це дуже спрощує конструкцію та зменшує габарити ТП, що має велике значення при застосуванні внутрішньоцехових ТП.
Питання про спорудження РП розглядають при кількості радіальних ліній, що перевищує вісім. Сумарна потужність секцій РП повинна забезпечувати повне використання пропускної здатності головних вимикачів і ліній, які живлять ці секції.
При використанні радіальних схем здійснюється глибоке секціонування всієї СЕП – від основних ДЖ (ГПП) і до шин напругою до 1кВ, а іноді навіть цеховими СРШ. За допомогою секційних апаратів може здійснюватися АВР для живлення в післяаварійному режимі роботи СЕП.
У другому випадку, здійснюється радіальне живлення цехових двотрансформаторних підстанцій від різних секцій РП окремими лініями для кожного трансформатора. Крім того, радіальне живлення цехових ТП є доцільним від шин ГПП при навантаженнях, розташованих у різних напрямках від неї.
3.7 Розрахунок струмів трифазного короткого замикання на шинах низької напруги головної понижувальної підстанції
Розрахунку струмів КЗ передує аналіз схеми електричної мережі та визначення найбільш складних, але ймовірних розрахункових умов, у яких може бути той чи інший її елемент. Ці умови повинні відображатися в розрахунковій схемі, яка являє собою однолінійну схему електричної мережі з ЕА та провідниками, що підлягають вибору і перевірці за умовами КЗ [3, 5, 6].
Режим СЕП, при якому струм КЗ в елементі, що вибирається або перевіряється, буде найбільшим, досягається за умов, коли в мережі між джерелами і точкою КЗ ввімкнена найменша кількість послідовних елементів і найбільша кількість - паралельних.
У схемі електропостачання авіаційного заводу в нормальному режимі передбачена роздільна робота трансформаторів ГПП на збірні шини 6 або 10 кВ (секційний вимикач вимкнений). У разі наявності РП його секційний вимикач також вимкнений.
У розрахунковій схемі максимального режиму (рис. 3.2) один із трансформаторів вимкнений, а секційний вимикач увімкнений. Цей режим можливий у таких випадках: один із трансформаторів знаходиться в планово-попереджувальному ремонті або післяаварійному режимі. Крім того, усі робочі ЕД перебувають в роботі, а трансформатори ГПП працюють з максимальною добавкою напруги.
Алгоритм розрахунку струмів трифазного короткого замикання на шинах низької напруги головної понижувальної підстанції для максимального режиму
Розрахунок виконано в іменованих одиницях. У розрахункових формулах прийнято такі розмірності величин: повна потужність -МВА, активна потужність - МВт, напруга - кВ, струм - кА, опір - Ом.
Рисунок 3.1 – Розрахункова схема для максимального режиму