Смекни!
smekni.com

Эффективность координированного управления (стр. 11 из 11)

Data file:var.22 Linear Programming Data Screen

Number of constraints (2-99) 32 Number of variables (2-99) 26

minimize

minimize + 2.6yl + 2.3y4 + 3.2y5 + 3y6 + .6y7 + 3.7y8 + 2.4yl0 + 3.2yll
+ 1.8yl2 + 2.8yl3 + 1.5yl4
const 1: + 1x1 = 0
const 2: - 1x1 + 1x2 + lyl > 3
const 3: - 1x1 + 1x3 + ly2 > 2
const 4: - 1x1 + 1x4 + ly3 > 4
const 5: - 1x3 + 1x5 + ly5 > 3
const 6: - 1x2 + 1x6 + ly4 > 4
const 7: - 1x5 + 1x6 + ly9 > 2
const 8: - 1x3 + 1x7 + ly7 > 3
const 9: - 1x4 + 1x7 + ly8 > 4
const 10: - 1x3 + 1x8 + ly6 > 4
const 11: - 1x5 + 1x8 + lylO > 3
const 12: - 1x7 + 1x8 + lyll > 4
const 13: - 1x8 + 1x9 + lyl3 > 3
const 14: - 1x7 + 1x10 + lyl2 > 5
const 15: - 1x9 + 1x10 + lyl4 > 3
const 16: - 1x10 + 1x11 + lyl5 > 2
const 17: + 1x11 < 17
const 18: + lyl < 1
const 19: + ly2 < 0
const 20: + ly3 < 0
const 21: + ly4 < 1
const 22: + ly5 < 1
const 23: + ly6 < 1
const 24: + ly7 < 1
const 25: + ly8 < 1
const 26: + ly9 < 0
const 27: + lylO < 1
const 28: + lyll < 1
const 29: + lyl2 < 2
const 30: + lyl3 < 1
сonst 31: + lyl4 < 1
const 32: + lyl5 < 0

Приложение 5.

Data file:var.22 Linear Programming Data Screen

Number of constraints (2-99) 32 Number of variables (2-99) 26

minimize

minimize + 2.6yl + 2.3y4 + 3. 2y5 + 3y6 + . 6y7 + 3.7y8 + 2.4yl0 + 3.2yll + 1.8yl2 + 2.8yl3 + 1.5yl4
const 1 + 1x1 = 0
const 2 - 1x1 + 1x2 + lyl > 3
const 3 - 1x1 + 1x3 + ly2 > 2
const 4 - 1x1 + 1x4 + ly3 > 4
const 5 - 1x3 + 1x5 + ly5 > 3
const 6 - 1x2 + 1x6 + ly4 > 4
const 7 - 1x5 + 1x6 + ly9 > 2
const 8 - 1x3 + 1x7 + ly7 > 3
const 9 - 1x4 + 1x7 + ly8 > 4
const 10 - 1x3 + 1x8 + ly6 > 4
const 11 - 1x5 + 1x8 + lylO > 3
const 12 - 1x7 + 1x8 + lyll > 4
const 13 - 1x8 + 1x9 + lyl3 > 3
const 14 - 1x7 + 1x10 + lyl2 > 5
const 15 - 1x9 + 1x10 + lyl4 > 3
const 16 - 1x10 + 1x11 + lyl5 > 2
const 17 + 1x11 < 16
const 18 + lyl < 1
const 19 + ly2 < 0
const 20 + ly3 < 0
const 21 + ly4 < 1
const 22 + ly5 < 1 const 23 + ly6 < 1const 24 + ly7 < 1const 25 + ly8 < 1const 26 + ly9 < 0 const 27 + lylO < 1 const 28 + lyll < 1const 29 + lyl2 < 2const 30 + lyl3 < 1const 31 + lyl4 < 1const 32 + lyl5 < 0

Приложение 5.1.

Data file: var. 22 Linear Programming Solution

Number of constraints (2-99) 32 Number of variables (2-99) 26

minimize

Solution value =11.2 Multiple Optimal Solutions Exist
Optimal Reduced Original Lower Upper
Value Cost Coeficnt Limit Limit
xl 0.00 0.00 0.00 0.00 0.00
x2 5.00 0.00 0.00 0.00 0.00
x3 4.00 0.00 0.00 0.00 0.00
x4 4.00 0.00 0.00 -3.70 Infinity
x5 7.00 0,00 0.00 0.00 0.00
x6 9.00 0.00 0.00 0.00 0.00
x7 7.00 0.00 0.00 —Infinity 0.50
x8 10.00 0.00 0.00 —Infinity .9000001
x9 12.00 0.00 0.00 ---Infinity 2.20
xlO 14.00 0.00 0.00 —Infinity 3.70
xll 16.00 0.00 0.00 —Infinity 3.70
y12 0.00 2.60 2.60 0.00 Infinity
y2 0.00 0.00 0.00 0.00 0.00
y3 0.00 0.00 0.00 —Infinity 3.70
y4 0.00 2.30 2.30 0.00 Infinity
y5 0.00 3.20 3.20 0.00 Infinity
y6 0.00 3.00 3.00 0.00 Infinity
y7 0.00 0.60 0.60 0.00 Infinity
y8 1.00 0.00 3.70 3.20 Infinity
y9 0.00 0.00 0.00 0.00 0.00
ylO 0.00 2.40 2.40 0.00 Infinity
yll 1.00 0.00 3.20 —Infinity 3.70
yl2 0.00 1.80 1.80 0.00 Infinity
yi3 1.00 0.00 2.80 —Infinity 3.70
yl4 1.00 0,00 1.50 —Infinity 3,70
yl5 0.00 0.00 0.00 —Infinity 3,70

Приложение 6.

Data file:var.22 Linear Programming Data Screen

Number of constraints (2-99) 18 Number of variables (2-99) 35

maximize

maximize + 1I
const 1: + lal =2.1
const 2: + 1bl =2.1
const 3: + 1cl =2.3
const 4: - 1.06al + la2 + 1dl =2.2
const 5: - 1.06bl + lb2 + le1 =1.9
const 6: – 1.06cl + lc2 - 1.015el + le2 = .1
const 7: + 1.06a2 - la3 + 1.06dl - ld2 =1.1
const 8: + 1.015a3 - la4 + 1.06b2 - lb3 = 1.6
const 9: + 1.015b3 - lb4 + 1.06c2 - lc3 + 1.06e2 - le3 = 1
const 10: + 1.015b4 - lb5 + 1.06d2 - ld3 = .2
const 11: + 1.06a4 - la5 + 1.015b5 - lb6 + 1.035c3 - lc4 = 1.4
const 12: + 1.015c4 - lc5 + 1.035d3 - ld4 + 1.06e3 - le4 =2.4
const 13: + 1.06a5 - la6 + 1.06b6 - lb7 + 1.035d4 - ld5 = 1
const 14: + 1.06c5 - lc6 + 1.06e4 - le5 = 1
const 15: + 1.015e5 - le6 = 1
const 16: + 1.06a6 - la7 + 1.06b7 - lb8 + 1.06d5 - ld6 = 0
const 17: + 1.06c6 - lc7 = 0
const 18: + 1.035a7 + 1.035b8 + 1.015c7 + 1.035d6 + 1.06e6 – 1I = 0

Приложение 7.

Data file: var.22 Linear Programming Solution

Number of constraints (2-99) 20 Number of variables (2-99) 40 maximize

Solution value = 2.430179 Multiple Optimal Solutions Exist
Optimal Reduced Original Lower Upper
Value Cost Coeficnt Limit Limit
a1 2.10 0.00 0.00 0.00 0.00
a2 4.426 0.00 0.00 0.00 0.00
a3 1.749202 0.00 0.00 0.00 0.00
a4 0.00 0.00 0.00 0.00 0.00
a5 0.00 0.00 0.00 0.00 0.00
a6 0.00 0.00 0.00 0.00 0.00
a7 2,292622 0.00 0.00 0.00 0,00
b1 2.10 0.00 0.00 0.00 0.00
b2 2.75543 0,00 0.00 0.00 0.00
b3 1.320755 0.00 0.00 0.00 0.00
b4 0.00 0.00 0.00 0.00 0,00
b5 0.00 0.00 0.00 0.00 0.00
b6 0.00 0.00 0.00 0.00 0,00
b7 0.00 0.00 0.00 0.00 0.00
c1 2.30 0.00 0.00 0.00 0.00
c2 3.92913 0.00 0.00 0.00 0.00
c3 0.00 .011285 0.00 -Infinity 0112849
c4 0.00 0.00 0.00 0.00 0.00
c5 0.00 0.00 0.00 0.00 0.00
c6 0.00 0.00 0.00 0.00 0.00
c7 0.00 0.00 0.00 0.00 0.00
d1 0.00 0.00 0.00 0.00 0.00
d2 1.842357 0.00 0.00 0.00 0.00
d3 1.7529 0.00 0.00 0.00 0.00
d4 .9852217 0.00 0.00 0.00 0.00
d5 0.00 .005286 0.00 -Infinity 0 .005286
d6 3.106247 0.00 0.00 0.00 0.00
d7 0.00 0.00 0.00 0.00 0.00
e1 1.370571 0.00 0.00 0.00 0.00
e2 0.00 0.00 0.00 0.00 0.00
e3 4.975301 0.00 0.00 0.00 0.00
e4 3.873818 0.00 0.00 0.00 0.00
e5 0.00 .010043 0.00 -Infinity 0100435
e6 .9852217 0.00 0.00 0-00 0.00
e7 0.00 0.00 0.00 0.00 0.00
e8 0.00 .004704 0.00 -Infinity 0047045
f1 1.872851 0.00 0.00 0.00 0.00
f2 0.00 0.00 0,00 0.00 0.00
f3 0.00 0.00 0,00 0.00 0.00
I 2.43018 0.00 1.00 1.00 1.00

Приложение8.

Data file: Var.22 Linear Programming Solution

Number of constraints (2-99) 18 Number of variables (2-99) 35 maximize

Solution value = 2.121788 Multiple Optimal Solutions Exist
Optimal Reduced Original Lower Upper
Value Cost Coeficnt Limit Limit
al 2.10 0.00 0.00 0,00 0.00
a2 4.426 0.00 0.00 0.00 0.00
a3 1.141323 0.00 0.00 0.00 0,00
a4 3.932002 0.00 0.00 0.00 0.00
a5 0.00 0.00 0.00 0.00 0.00
a6 1.933997 0.00 0.00 0.00 0.00
a7 2,050037 0.00 0.00 0.00 0.00
b1 2.10 0.00 0.00 0.00 0.00
b2 4.126 0.00 0.00 0.00 0.00
b3 0.00 .005687 0.00 -Infinity 0.005687
b4 0.00 .010806 0.00 -Infinity .0108058
b5 0.00 0.00 0.00 0.00 0.00
b6 2.767922 0.00 0.00 0.00 0.00
b7 0.00 0.00 0.00 0.00 0.00
b8 0.00 0.00 0.00 0.00 0.00
c1 2,30 0.00 0.00 -Infinity Infinity
c2 2.538 0.00 0.00 0.00 0.00
c3 0.00 .005253 0.00 -Infinity .0052528
c4 0.00 .005365 0.00 —Infinity .0053652
c5 0.00 0.00 0.00 0.00 0.00
c6 0.00 0.00 0.00 0.00 0.00
c7 0.00 0.00 0.00 0.00 0.00
d1 0.00 0.00 0,00 0.00 0.00
d2 2.450237 0.00 0.00 0.00 0.00
d3 2.397251 0.00 0.00 0.00 0.00
d4 0.00 .004955 0.00 —Infinity .0049555
d5 0.00 0.00 0.00 0.00 0.00
d6 0.00 0.00 0.00 0.00 0.00
e1 0.00 ,006028 0.00 —Infinity .0060283
e2 0.00 0.00 0.00 0.00 0.00
e3 1.69028 0.00 0.00 0.00 0.00
e4 1.872851 0.00 0.00 0.00 0.00
e5 .9852217 0.00 0.00 0.00 0,00
e6 0.00 0.00 0.00 0.00 0.00
I 2.121788 0.00 1.00 1.00 1.00