Смекни!
smekni.com

Развитие понятия числа (стр. 2 из 6)

Таким образом, совокупность рациональных чисел оказывается достаточной для удовлетворения многих практических потребностей. Формальное обоснование понятий дробного и отрицательного числа было осуществлено в 19 в. и не представило, в отличие от обоснования натурального числа, принципиальных затруднений.

Совокупность рациональных чисел оказалась недостаточной для изучения непрерывно изменяющихся переменных величин. Здесь оказалось необходимым новое расширение понятий числа, заключающееся в переходе от множества рациональных чисел к множеству действительных (вещественных) чисел. Этот переход состоит в присоединении к рациональным числам т.н. иррациональных чисел. [1]

3.1. Дробные числа.

3.1.1. О происхождении дробей.

Необходимость в дробных числах возникла в результате практической деятельности человека. Потребность в нахождении долей единицы появилась у наших предков при дележе добычи после охоты. Второй существенной причиной появления дробных чисел следует считать измерение величин при помощи выбранной единицы измерения.

Так возникли дроби.

В истории развития дробного числа мы встречаем дроби трёх видов:

1) доли или единичные дроби, у которых числитель единица, знаменателем же может быть любое целое число;

2) дроби систематические, у которых числителями могут быть любые числа, знаменателями же – только числа некоторого частного вида, например степени десяти или шестидесяти;

3) дроби общего вида, у которых числители и знаменатели могут быть любыми числами.

Изобретение этих трёх различных видов дробей представляло для человечества разные степени трудности, поэтому разные виды дробей появлялись в разные эпохи.

Знакомство человека с дробными числами началось с единичных дробей с малыми знаменателями.

Понятия «половина», «треть», «четверть», «осьмушка» употребляются часто людьми, которые арифметике дробных чисел никогда не обучались. Эти простейшие дроби изобрёл каждый народ самостоятельно в ходе своего развития.

Первой дробью, с которой познакомились люди, была половина. Хотя названия всех следующих дробей связаны с названиями их знаменателей (три – «треть», четыре – «четверть» и т. д.), для половины это не так – ее название во всех языках не имеет ничего общего со словом «два». Следующей дробью была треть.

Таким образом, первые дроби, с которыми нас знакомит история, это дроби вида –

– так называемые единичные дроби или аликвотные (от лат. aliquot – «несколько»).

Единичные дроби встречаются в древнейших дошедших до нас математических текстах, составленных более 5000 лет тому назад, – древнеегипетских папирусах и вавилонских клинописных табличках.

В древности наибольшего развития обыкновенные дроби достигли в Индии. В рукописях, относящихся к 4 веку до нашей эры, встречаются уже не только единичные дроби, но и дроби с произвольными числителями. В начале VII столетия индийцы знали и формулировали правила действий над обыкновенными дробями. В Западной Европе окончательно установленную и ясную теорию обыкновенных дробей дал в 1585 году фламандский инженер Симон Стевин. [5]

3.1.2. Дроби в Древнем Египте.

В Древнем Египте архитектура достигла высокого развития. Для того, чтобы строить грандиозные пирамиды и храмы, чтобы вычислять длины, площади и объемы фигур, необходимо было знать арифметику. Из расшифрованных сведений на папирусах ученые узнали, что египтяне 4 000 лет назад имели десятичную (но не позиционную) систему счисления, умели решать многие задачи, связанные с потребностями строительства, торговли и военного дела. На протяжении многих веков египтяне именовали дроби “ломаным числом”, а первая дробь с которой они познакомились была 1/2. За ней последовали 1/4, 1/8, 1/16, …, затем 1/3, 1/6, …, т.е. самые простые дроби называемые единичными. У них числитель всегда единица.

Египтяне все дроби старались записать как суммы единичных дробей (долей). Например, вместо

они писали
.
Дробь записывали в виде долей:
. Производить арифметические действия над числами, всякий раз раскладывая их в сумму долей единицы, очень неудобно. Имеет ли пристрастие египтян к аликвотным дробям какое-либо объяснение?

Поясним это примером. Рассмотрим такую задачу: «Разделить 7 хлебов между 8 людьми».

Вот как эта задача решена на папирусе Райнда – это древнеегипетский математический текст, переписанный около 1650 г. до н.э. писцом Ахмесом.

Поскольку

. Следовательно, каждому человеку нужно дать по половине, четверти и восьмушке хлеба. Теперь ясно, что надо 4 хлеба разрезать пополам, 2 хлеба на 4 части и только один хлеб – на 8 частей.

Для разложения неединичных дробей на сумму единичных существовали готовые таблицы, которыми и пользовались египетские писцы для необходимых вычислений.

Можно показать, что каждое положительное рациональное число может быть представлено в виде египетской дроби. Сумма такого типа использовалась математиками как определение для дробей начиная со времён древнего Египта до средневековья. В современной математике вместо египетских дробей используются простые и десятичные дроби, однако египетские дроби продолжают изучаться в теории чисел и истории древней математики.

3.1.3. Дроби в Древнем Риме.

Интересная система дробей была в Древнем Риме. Римляне пользовались, в основном, только конкретными дробями, которые заменяли абстрактные части подразделами используемых мер. Эта система дробей основывалась на делении на 12 долей единицы веса, которая называлась асс. Так возникли римские двенадцатеричные дроби, т.е. дроби у которых знаменатель всегда был двенадцать. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью- весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия.

Даже сейчас иногда говорят: ”Он скрупулёзно изучил этот вопрос.” Это значит, что вопрос изучен до конца, что не одной самой малой неясности не осталось. А происходит странное слово “скрупулёзно” от римского названия 1/288 асса - “скрупулус”. В ходу были и такие названия: ”семис”- половина асса, “секстанс”- шестая его доля, “семиунция”- половина унции, т.е. 1/24 асса и т.д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию ( 2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.

Ещё в первом веке до нашей эры выдающийся римский оратор и писатель Цицерон говорил: “Без знания дробей никто не может признаваться знающим арифметику!”.

Характерен следующий отрывок из произведения знаменитого римского поэта I века до нашей эры Горация о беседе учителя с учеником в одной из римских школ той эпохи:

- Учитель: Пусть скажет Сын Альбина, сколько останется, если от пяти унций отнять одну унцию!

- Ученик: Одна треть.

- Учитель: Правильно, ты хорошо знаешь дроби и сумеешь сберечь своё имущество.

Сейчас «асс» - аптекарский фунт.

3.1.4. Вавилонские шестидесятеричные дроби.

Происхождение шестидесятеричной системы неясно. Возможно, она связана с двенадцатеричной системой счисления (60 = 5×12, где 5 — число пальцев на руке). Существует также гипотеза О. Нейгебауэра о том, что после аккадского завоевания шумерского государства там долгое время одновременно существовали две денежно-весовые единицы: шекель (сикль) и мина, причём было установлено их соотношение 1 мина = 60 шекелей. Позднее это деление стало привычным и породило соответствующую систему записи любых чисел. [7]

Раскопками, проведенными в ХХ веке среди развалин древних городов южной части Двуречья, обнаружено большое количество клинописных математических табличек. Ученые, изучая их, установили, что за 2000 лет до н. э. у вавилонян математика достигла высокого уровня развития.

Письменная шестидесятеричная нумерация вавилонян комбинировалась из двух значков: вертикального клина ▼, обозначавшего единицу, и условного знака ◄, обозначавшего десять.

В вавилонских клинописных текстах впервые встречается позиционная система счисления. Вертикальный клин обозначал не только 1, но и 60, 602, 603 и т.д. Знака для нуля в позиционной шестидесятеричной системе у вавилонян вначале не было. Позже был введен знак èè , заменяющий современный ноль, для отделения разрядов между собой.

Происхождение шестидесятеричной системы счисления у вавилонян связано, как полагают ученые, с тем, что вавилонская денежная и весовая единицы измерения подразделялись в силу исторических условий на 60 равных частей: 1 талант = 60 мин; 1 мина = 60 шекель. Шестидесятые доли были привычны в жизни вавилонян. Вот почему они пользовались шестидесятеричными дробями, имеющими знаменателем всегда число 60 или его степени: 602 = 3600, 603 = 216000 и т.д. В этом отношении шестидесятеричные дроби можно сравнить с нашими десятичными дробями. Вавилонская математика оказала влияние на греческую математику. Следы вавилонской шестидесятеричной системы счисления удержались в современной науке при измерении времени и углов. До наших дней сохранилось деление часа на 60 мин., минуты на 60 с, окружности на 360 градусов, градуса на 60 мин., минуты на 60с. Вавилоняне внесли ценный вклад в развитие астрономии. Шестидесятеричными дробями пользовались в астрономии ученые всех народов до XVII века, называя их астрономическими дробями. В отличие от них, дроби общего вида, которыми пользуемся мы, были названы обыкновенными.