В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас.
Уже в произведении выдающегося индийского математика и астронома Брахмагупты (598 – около 660 гг.) мы читаем: “ имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество – долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму”.
Отрицательными числами индийские математики пользовались при решении уравнений, причем вычитание заменяли добавлением с равнопротивоположным числом.
Вместе с отрицательными числами индийские математики ввели понятие ноль, что позволило им создать десятеричную систему исчисления. Но долгое время ноль не признавали числом, “nullus” по латыни – никакой, отсутствие числа. И лишь через X веков, в XVII-ом столетии с введением системы координат ноль становится числом. [9]
3.2.2. Развитие идеи отрицательного количества в Европе.
В Европе в XII веке нашей эры появились отрицательные числа, их называли “ложными” в отличие от положительных чисел – «истинных».
Широко использовать отрицательные числа, выполнять действия с ними, строить координатную прямую стали благодаря работам французского математика Рене Декарта.
Также в Европе к идее отрицательного количества достаточно близко подошел в начале XIII столетия Леонардо Пизанский, однако в явном виде отрицательные числа применил впервые в конце XV столетия французский математик Шюке.
Современное обозначение положительных и отрицательных чисел со знаками « + » и « - » применил немецкий математик Видман, однако еще в ХVI столетии много математиков (например, Виет) не признавали отрицательных чисел.
Натуральные числа, противоположные им (отрицательные) числа и ноль называются целыми числами. Целые и дробные числа на 2-ом уровне обобщения получили общее название - рациональные числа. Их называли также относительными, потому что любое их них можно представить отношением двух целых чисел. Каждое рациональное число можно представить как бесконечную периодическую десятичную дробь.
С помощью рациональных чисел можно осуществлять различные измерения (например, длины отрезка при выбранной единице масштаба) с любой точностью. То есть совокупность рациональных чисел достаточна для удовлетворения большинства практических потребностей.
Окончательное и всеобщее признание как действительно существующие отрицательные числа получили лишь в первой половине XVIII в. Тогда же утвердилось и современное обозначение для отрицательных чисел.
4. Действительные рациональные и иррациональные числа.
Рациональные и иррациональные числа составляют вместе множество действительных чисел. Каждому действительному числу соответствует единственная точка координатной прямой. Каждая точка координатной прямой соответствует единственному действительному числу (достаточно найти расстояние до этой точки от начала отсчета и поставить перед найденным числом знак + или – в зависимости от того, справа или слева от начала отсчете находится заданная точка). Для краткости обычно вместо фразы “точка координатной прямой, соответствующая действительному числу a” пишут и говорят “точка a”, а, употребляя термин “число a”, имеют в виду ”действительное число a”. Множество действительных чисел называют также числовой прямой. Геометрической моделью числовой прямой служит координатная прямая.
Термин «рациональное» (число) происходит от латиноамериканского слова ratio – отношение, которое является переводом греческого слова “логос”в отличие от рациональных чисел, числа, выражающие отношение несоизмеримых величин, были названы еще в древности иррациональными, т.е. нерациональными (по-гречески “алогос”) правда, первоначально термины “рациональный” и “иррациональный” относились не к числам, а к соизмеримым и соответственно не соизмеримым величинам, которые пифагорейцы называли выразимыми и невыразимыми, Теодор Киренский же симметричными и ассимметричными. В V-VI вв. римские авторы Капелла и Кассиодор переводили эти термины на латынь словами rationalis и irrationalis. Термин «соизмеримый» (commensurabilis) ввел в первой половине VI в. другой римский автор- Боэций.
Древнегреческие математики классической эпохи пользовались только рациональными числами (вернее целыми, дробными и положительными). В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически. [4]
Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа. Греки называли иррациональную величину, например, корень из квадратного числа, «алогос» – невыразимое словами, а позже европейские переводчики с арабского на латынь перевели это слово латинским словом surdus – глухой. В Европе термин surdus- глухой впервые появился в середине XII в. у Герарда Кремонского, известного переводчика математических прозведений с арабского на латынь, затем у итальянского математика Леонардо Фабоначчи и других европейских математиков, вплоть до XVIII в. Правда уже в XVI в. Отдельные ученые, в первую очередь итальянский математик Рафаэль Бомбелли и нидерландский математик Симон Стевин считали понятие иррационального числа равноправным с понятием рационального числа. Стевин писал: «Мы приходим к выводу, что не существует никаких абсурдных, иррациональных, неправильных, необъяснимых или глухих чисел, но что среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью.»
Еще до Бомбелли и Стевина многие ученые стран Среднего Востока в своих трудах употребляли иррациональные числа как полноправные объекты алгебры. Более того, комментируя «Начала» Евклида и исследуя общую теорию отношения Евдокса, Омар Хайям уже в начале XII в. теоретически расширяет понятие числа до положительного действительного числа. В том же направлении много было сделано крупнейшим математиком XIII в. ат-Туси.
Математики и астрономы Ближнего и Среднего Востока вслед за астрономами древнего Вавилона и эллинистической эпохи широко пользовались шестидесятеричными дробями, арифметические действия с которыми они называли «арифметикой астрономов». По аналогии с шестидесятеричными дробями самаркандский ученый XV в. ал-Каши в работе «Ключ арифметики» ввел десятичные дроби которыми он пользовался для повышения точности извлечения корней. Независимо от него по такому же пути шел открывший в 1585 г. десятичные дроби в Европе Симон Стевин, который в своих «приложениях к алгебре» (1594 г.) показал, что десятичные дроби можно использовать для бесконечно близкого приближения к действительному числу. Таким образом, уже в XVI в. зародилась идея о том, что естественным аппаратом для введения и обоснования понятия иррационального числа являются десятичные дроби. Появление «Геометрии» Декарта облегчило понимание связи между измерением любых отрезков (и геометрических величин вообще) и необходимости расширения понятия рационального числа. На числовой оси иррациональные числа, как и рациональные, изображаются точками. Это геометрическое толкование позволило лучше понять природу иррациональных чисел и способствовало их признанию.
В современных учебных руководствах основа определения иррационального числа опирается на идеи ал-Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснованием свойств действительных чисел и полная теория их была разработана лишь в XIX в.
Действительные числа иногда подразделяют также на алгебраические и трансцендентные. Алгебраическими называют числа, которые являются корнями алгебраических многочленов с целыми коэффициентами.
Все остальные (неалгебраические) числа относятся к трансцендентным. Так как каждое рациональное число p/q является корнем соответствующего многочлена первой степени с целыми коэффициентами qx –p, то все трансцендентные числа иррациональны. [3]
5. Комплексные и мнимые числа.
Комплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Это, однако, не является достаточным основанием для того, чтобы вводить в математику новые числа. Оказалось, что если производить вычисления по обычным правилам над выражениями, в которых встречаются квадратный корень из отрицательного числа, то можно прийти к результату, уже не содержащему квадратный корень из отрицательного числа. В XVI в. Кардано нашел формулу для решения кубического уравнения. Оказалось, когда кубическое уравнение имеет три действительных корня, в формуле Кардано встречается квадратный корень из отрицательного числа. Поэтому квадратные корни из отрицательных чисел стали употреблять в математике и назвали их мнимыми числами – тем самым они как бы приобрели право на нелегальное существование. Полные гражданские права мнимым числам дал Гаусс, который назвал их комплексными числами, дал геометрическую интерпретацию и доказал основную теорему алгебры, утверждающую, что каждый многочлен имеет хотя бы один действительный корень.
Решение многих задач математики, физики сводится к решению алгебраических уравнений. Поэтому исследование алгебраических уравнений является одним из важнейших вопросов в математике. Стремление сделать уравнения разрешимыми – одна из главных причин расширения понятия числа.
Так для решимости уравнений вида X+A=B положительных чисел недостаточно. Например, уравнение X+5=2 не имеет положительных корней. Поэтому приходится вводить отрицательные числа и нуль.