“гарантированным” темпом роста: поддерживая его, предприниматели будут полностью удовлетворенны своими решениями, поскольку спрос будет равен предложению и их ожидания будут сбываться. Такой темп роста обеспечивает полное использование производственных мощностей (капитала), но полная занятость при этом не всегда достигается.
Анализ соотношений между гарантированным и фактическим темпами роста позволил сделать следующий вывод: если фактически запланированный предпринимателями темп роста предложения отличается от гарантированного темпа роста (превышает или не достигает его), то система постепенно отдаляется от состояния равновесия .
Помимо гарантированного темпа роста Харрод вводит понятие “естественного” темпа роста. Это максимальный темп допускаемый ростом активного населения и техническим прогрессом. При таком темпе достигается полная занятость факторов – труда и капитала. Если гарантированный темп роста, удовлетворяющий предпринимателей, выше естественного, то вследствие недостатка трудовых ресурсов фактический темп окажется ниже гарантированного: производители будут разочаровываться в своих ожиданиях, снизят объем выпуска и инвестиции, в результате чего система будет находиться в состоянии депрессии.
Если гарантированный темп роста ниже естественного, то фактический темп может превысить гарантированный, поскольку существующий избыток трудовых ресурсов дает возможность увеличить инвестиции. Экономическая система будет переживать бум. Фактический темп роста может быть также равен гарантированному и тогда экономика будет развиваться в условиях динамического равновесия, вполне удовлетворяющих предпринимателей, но при наличии вынужденной безработицы. Идеальное развитие экономической системы достигается при равенстве гарантированного, естественного и фактического темпов роста в условиях полной занятости ресурсов.
Но поскольку всякое отклонение инвестиций от условий гарантированного темпа как известно выводит систему из равновесия и сопровождается все более увеличивающимся расхождением между спросом и предложением, динамическое равновесие в модели Харрода также оказываются неустойчивым.
Часто обе модели объединяют в одну модель Харрода – Домара. Обе модели приводят к выводу, что при данных технических условиях производства темп экономического роста определяется величиной предельной склонности к сбережению, а динамическое равновесие может существовать в условиях не полной занятости.
Ограниченность данных моделей заданно уже предпосылками их анализа. Например, используемая в них производственная функция Леонтьева характеризуется отсутствием и взаимозаменяемости факторов производства – труда и капитала, что в современных условиях не всегда соответствует действительности.
Модели Харрода и Домара неплохо описывали реальные процессы экономического роста 1920 – 1950 гг., но для более поздних наблюдений (1950 – 1970 гг.) наиболее успешно использовалась неоклассическая модель Р. Солоу[3].
Неоклассическая модель роста Р. Солоу.
Неоклассические модели роста преодолевали ряд ограничений кейнсианских моделей и позволяли более точно описать особенности макроэкономических процессов. Р.Солоу показал, что нестабильность динамического равновесия в кейнсианских моделях была следствием невзаимозаменяемости факторов производства. Вместо функции Леонтьева он использовал в своей модели производственную функцию Кобба—Дугласа, в которой труд и капитал являются субститутами. Другими предпосылками анализа в модели Солоу являются: убывающая предельная производительность капитала, постоянная отдача от масштаба, постоянная норма выбытия, отсутствие инвестиционных лагов.
Взаимозаменяемость факторов (изменение капиталовооруженности) объясняется не только технологическими условиями, но и неоклассической предпосылкой о совершенной конкуренции на рынках факторов.
Необходимым условием равновесия экономической системы является равенство совокупного спроса и предложения. Предложение описывается производственной функцией с постоянной отдачей от масштаба: Y=F(K,L) и для любого положительного z верно: zF(K,L)= F(zK, zL). Тогда если z=1/L, тоY/L=F(K/L,1). Обозначим (Y/L) через у, а (K/L) через к и перепишем исходную функцию в форме взаимосвязи между производительностью и фондовооруженностью (капиталовооруженностью): у=ƒ(k) (см. рис. 1). Тангенс утла наклона данной производственной функции соответствует предельному продукту капитала (МРК), который убывает по мере роста фондовооруженности (k).
Рис.
Совокупный спрос в модели Солоу определяется инвестициями и потреблением: у=i+с, где i и с - инвестиции и потребление в расчете на одного занятого. Доход делится между потреблением и сбережениями в соответствии с нормой сбережения, так что потребление можно представить как с=(1-s)y, где s -норма сбережения (накопления), тогда у=с+i=(1-s)y+i,
откуда i=sy. В условиях равновесия инвестиции равны сбережениям и пропорциональны доходу.
Условия равенства спроса и предложения могут быть представлены как ƒ(k)= с+i или ƒ(k)= i/s. Производственная функция определяет предложение на рынке товаров, а накопление капитала - спрос на произведенный продукт.
Динамика объёма выпуска зависит от объёма капитала (в нашем случае- капитала в расчете на одного занятого, или капиталовооруженности). Объём капитала меняется под воздействием инвестиций и выбытия: инвестиции увеличивают запас капитала, выбытие - уменьшает.