Чтобы отреагировать на те или иные изменения в структуре рынка или внедрить достижения научного прогресса, фирмам может требоваться разное время, что ограничивает возможности изменения в технологии производства. Поэтому следует отдельно рассмотреть производственную функцию в краткосрочном и долгосрочном периодах.
1.2. Краткосрочный период. Теория предельной производительности факторов
Краткосрочный период – это такой временной период, в течение которого количество некоторых используемых фирмой в процессе производства факторов не может быть изменено. К примеру, в нашей фирме «Булки и баранки», производящей выпечку, сложно изменить объём производства в течение одного рабочего дня путём привлечения новых пекарей или закупки новых печей. Однако в то время как затраты постоянного фактора (в данном случае – труд пекарей и печи) заданы, затраты переменного фактора (например, муки и яиц) можно изменять даже в краткосрочном периоде. Таким образом, производственная функция в краткосрочном периоде показывает зависимость объёма выпуска от затрат переменного фактора при неизменных затратах других факторов производства.
Чаще всего рассматривается пример, когда капитал является фиксированным фактором, а труд – переменным.
Предположим, основные средства производства «Булок и баранок» - это пекарня, где установлены три печи. Тогда объём выпуска будет зависеть только от количества работающих пекарей, а производственная функция будет представлена данными, содержащимися в третьей строке таблицы 1. Пусть количество пекарей будет варьироваться от одного до восьми (таблица 2).
Капитал | Труд | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
3 | 68 | 90 | 103 | 113 | 118 | 115 | 110 | 98 |
таблица 2 |
Кривая производственной функции, построенная на основе данных этой таблицы (рис. 3), показывает зависимость объёма продукции от количества привлечённого труда и представляет собой кривую общего продукта фактора L.
Если же с течением времени «Булки и баранки» приобретут другую пекарню с большим количеством печей, то, очевидно, производственная функция, описывающая зависимость выпуска от количества используемого труда, примет другой вид.Из таблицы и данного графика видно, что объём выпуска по мере увеличения использования одного фактора при фиксированном применении другого возрастает лишь до определённого момента, а затем начинает убывать. Для того, чтобы понять суть этого явления, необходимо рассмотреть предельный и средний продукты переменного фактора.
Предельный продукт фактора (MP) – это прирост выпуска продукции, достигнутый за счёт использования дополнительной единицы переменного фактора. В частности, предельный продукт труда равен
MPL=DQ/DL,
где MPL – предельный продукт труда L, DQ – изменение объёма выпуска, а DL – изменение используемого количества труда L.
Графически динамику предельного продукта MPL можно наблюдать на рисунке 4. Она проходит три важные стадии. На участке OA' предельный продукт возрастает, то есть каждый новый работник даёт бόльшую прибавку к выпуску, чем предыдущий. На участке A'C' предельный продукт начинает уменьшаться и достигает нуля в точке C'. В дальнейшем график MPL уходит в отрицательную область. Это объясняется тем, что на первом этапе небольшое количество рабочей силы будет не в состоянии справиться со всем объёмом работ – один пекарь будет вынужден обслуживать все три печи, производственные мощности будут использоваться неэффективно. На втором этапе, когда нехватка рабочей силы уже не так остра, каждый дополнительный работник будет обеспечивать меньшую прибавку к выпуску, чем предыдущий. Ну и, наконец, на третьем этапе работников будет слишком много – в нашем примере пекари будут больше мешать, чем помогать друг другу, в пекарне будет не хватать рабочего места.Теперь рассмотрим средний продукт фактора (AP), который также называют производительностью труда. Средний продукт AP равен отношению объёма произведённой продукции Q к использованному объёму данного вида затрат L:[10]
APL=Q/L.
Чем выше средний продукт, тем больше продукции получает фирма на единицу использованного труда. Из графика (рис. 4) видно, что средний продукт на участке OB', там, где MP>AP, возрастает, а на участке B'C' и далее, там, где MP<AP – убывает.
Графически величина предельного продукта определяется тангенсом угла наклона касательной к кривой общего продукта в точке, соответствующей определённому его объёму; величина среднего продукта – тангенсом угла наклона луча, идущего из начала координат к той же точке.[11]
Проследим, как ведёт себя график общего продукта TP. Его точки A, B и C имеют проекции на графиках предельного и среднего продукта – A', B' и C' соответственно.
В точке A – точке перегиба – график TP меняет свою выпуклость. До этого момента темп прироста общего продукта ускоряется. Это связано с тем, что предельный продукт на рассматриваемом отрезке растёт и достигает своего максимума в точке A'. Затем, так как предельный продукт начинает уменьшаться, скорость прироста общего продукта также падает, хотя и остаётся положительной до точки максимума C. В этой точке величина предельного продукта равна нулю. Далее предельный продукт принимает отрицательное значение, а общий продукт начинает сокращаться. На этом участке труд станет непроизводительным, и выбор такой технологии производства будет как технологически, так и экономически неэффективен.
Таким образом, на рисунке 4 наглядно проиллюстрирована взаимосвязь между общим, средним и предельным продуктом, а также отражена тенденция, известная как закон убывающей предельной производительности факторов производства. Этот закон состоит в том, что по мере увеличения использования переменного фактора при неизменном количестве всех остальных будет достигнут такой рубеж, после которого предельный продукт переменного фактора начнёт уменьшаться.[12]
Таким образом, чтобы принять технологически и экономически эффективное решение в процессе производства, необходимо учитывать действие данного закона при определении оптимального сочетания факторов.
1.3. Долгосрочный период. Эффект масштаба
Долгосрочный период – это период достаточно продолжительный, чтобы дать измениться как переменным, так и постоянным затратам, то есть фирма может варьировать все факторы производства. К примеру, фирма «Булки и баранки» в долгосрочном временном интервале может позволить себе приобрести ещё одну пекарню, установить лучшее оборудование, нанять больше работников. Таким образом, если фирма пропорционально увеличит затраты всех производственных факторов, изменится масштаб производства, который задаётся производственной функцией.
Пусть первоначальное отношение между выпуском и применяемыми факторами описывается производственной функцией
Q0=f(K, L),
где Q0 – объём выпуска, K – затраты капитала, L – затраты труда.
Если мы увеличим объёмы применяемых факторов (масштаб производства) в k раз, то новый объём выпуска, очевидно, составит[13]
Q1=f (kK, kL)
Взаимосвязь между изменением масштаба производства и соответствующим изменением в объёме выпуска продукции называется отдачей от масштаба.[14]
Отдача от масштаба может быть постоянной, возрастающей и убывающей (рис. 5).
При наиболее вероятном исходе мы столкнёмся с постоянной отдачей от масштаба (рис. 5, а).[15] В этом случае при увеличении затрат факторов производства K и L в k раз объём выпуска Q возрастёт также в k раз:
kQ=f(kK, kL).
Постоянная отдача от масштаба будет наблюдаться, например, на фабрике, если один рабочий за одним станком произведёт за смену десять изделий, а два рабочих на двух станках – двадцать.
В некоторых случаях при увеличении затрат факторов производства K и L в k раз выпуск продукции Q увеличивается более, чем в k раз:
f(kK, kL) > kf(K, L)
Это означает, что мы имеем дело с возрастающей отдачей от масштаба (рис. 5, б). Примером производства с возрастающей отдачей от масштаба может послужить технология производства нефтепровода. Удваивая диаметр трубы, мы используем в два раза больше материалов, но площадь поперечного сечения трубы возрастёт в четыре раза. Поэтому мы, очевидно, сможем прокачать через неё более чем вдвое больше нефти.