При линейной зависимости многофакторная модель может иметь вид:
Многофакторные модели используются при прогнозировании макроэкономических показателей, спроса на продукцию, себестоимости, цен, прибыли и других показателей.
Эконометрической моделью называют систему регрессионных уравнений и тождеств, описывающих взаимосвязи и зависимости основных показателей развития экономики. Система экономико-математических моделей эконометрического типа служит для описания сложных социально-экономических процессов. Факторы (переменные) экономической модели подразделяются на экзогенные (внешние) и эндогенные (внутренние). Экзогенные переменные выбираются так, чтобы они оказывали влияние на моделируемую систему, а сами ее влиянию не подвергались. Они могут вводиться в модель на основе экспертных оценок. Эндогенные переменные определяются путем решения стохастических и тождественных уравнений. Для каждой эндогенной переменой методом наименьших квадратов оценивается несколько вариантов регрессионных уравнений и выбирается лучший для включения в модель. Например, инвестиции производственного назначения зависят от суммы прибыли (эндогенный фактор), индекса цен на инвестиционные товары (экзогенный фактор). Органичной частью эконометрической модели может быть и межотраслевой баланс. Обычно количество уравнений модели равно количеству эндогенных переменных.
Эконометрические модели позволяют прогнозировать широкий круг показателей (ВНП, доходы населения, потребление товаров и услуг и др). В условиях автоматизации расчетов создается возможность разработки альтернативных вариантов развития экономики с учетом изменений внешних и внутренних условий (факторов). Следует отметить, что использование эконометрических моделей требует создание банков данных и высококвалифицированных специалистов по разработке и реализации этих моделей.
Имитационные модели. Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами. имитационные модели позволяют воспроизвести реальные процессы и предвидеть результаты различных действий. Например, имитационную модель оптимизационного процесса можно представить как систематическое изменение значений управляемых переменных с последующим получением результатов прогноза и их анализа.
Модели принятия решений основываются на теории игр. Они применяются в условиях неопределенности или ситуациях, когда интересы сторон не совпадают. Каждая из сторон принимает такие решения, т. е. выбирает такую стратегию действий, которая с их точки зрения обеспечивает наибольший выигрыш или наименьший проигрыш, причем каждой из сторон ясно, что результат зависит не только от своих действий, но и от действий партнеров. Например, противоборство конкурентов в процессе борьбы за рынок сбыта конкретного вида продукции. Модели сетевого планирования применяются с целью сокращения сроков выполнения сложных проектов и других работ и оптимального использования предназначенных для этого ресурсов. Основой сетевого планирования служит изображение комплекса взаимосвязанных работ в виде графа, обычно именуемого сетевым графиком, стрелочной диаграммой, логической сетью или сетевой моделью. В сетевом графике отражается последовательность этапов, необходимых для достижения заранее поставленной цели. Примером сетевых методов планирования является метод ПЕРТ-время, ПЕРТ-затраты.
Экономико-математические модели могут быть реализованы с помощью экономико-математических методов (ЭММ). ЭММ представляют собой способы (приемы) расчетов экономических показателей с применением методов прикладной математики и математической статистики. С помощью ЭММ создается возможность всестороннего обоснования изменения экономических показателей. Они позволяют повысить качество прогнозов, осуществлять многовариантные оптимизационные расчеты.
Среди важнейших экономико-математических методов, используемых в прогнозировании и планировании экономических и социальных процессов как в нашей стране, так и за рубежом, следует выделить: метод межотраслевого баланса, методы оптимизации, корреляционно-регрессионный метод. Метод межотраслевого баланса базируется на принципах разработки межотраслевого баланса, которые были обоснованы специалистами бывшего СССР и развиты за рубежом (В. Леонтьевым в США). Использование метода на основе модели межотраслевого баланса позволяет осуществлять прогнозирование развития экономики и ее отраслевой структуры, исходя из конечных потребностей (конечного использования ВНП). Процесс разработки межотраслевого баланса подразделяется на ряд последовательных этапов: 1) определение объема и отраслевой структуры конечного продукта (конечного использования ВНП) в прогнозируемом периоде; 2) разработка коэффициентов прямых материальных затрат по каждой отрасли на прогнозируемый период; 3) расчет коэффициентов полных затрат на производство единицы конечного продукта (конечного использования ВНП); 4) определение прогнозируемых объемов производства продукции по каждой отрасли, исходя из коэффициентов полных затрат и намечаемых объемов конечного продукта (конечного использования ВНП); 5) формирование структуры выпуска продукции с выделением промежуточного потребления и конечного использования по каждой отрасли. В математической форме межотраслевой баланс представляет собой систему уравнений:
a11 x1 + a12 x2 + ……+ a1n xn + Y1 = X1,
a21 x1 + a22 x2 + ……+ a2n xn + Y2 = X2,
……………………………………….
an1 x1 + an2 x2 + ……+ ann xn + Yn = Xn.
Для решения системы уравнений составляется матрица коэффициентов прямых затрат. Путем математических преобразований формируется матрица коэффициентов полных затрат. Расчет производится на ЭВМ с помощью специальной программы обращения матрицы. Путем умножения матрицы коэффициентов полных затрат на матрицу (вектор) Y конечного продукта (конечного использования ВНП) рассчитывается объем производства продукции (услуг) по каждой отрасли. Затем на основе представленной выше системы уравнений производится расчет межотраслевых поставок, в целом промежуточного продукта и формируется таблица межотраслевого баланса, адекватная модели МОБ. К методам оптимизации относятся линейное программирование (симплекс-метод) и целочисленное программирование. С помощью методов оптимизации создается возможность выбора оптимального варианта использования ресурсов и удовлетворения потребностей в продукции, размещения производительных сил, рационального прикрепления поставщиков к потребителям и решать другие задачи. Оптимизационные расчеты осуществляются на основе разработанных экономико-математических моделей и исходной информации с использованием специальных пакетов программ и ЭВМ. Программно формируется матрица, в которой отражаются коэффициенты затрат, тип ограничений и вектор ограничений, а также коэффициенты целевой функции. С помощью методов оптимизации производится расчет, в процессе которого осуществляется выбор оптимального варианта в соответствии с целевой функцией в рамках установленных ограничений.
Результаты оптимизационных расчетов носят рекомендательный характер. Можно проводить множество расчетов, изменяя ограничения по ресурсам, спросу на продукцию в связи с изменяющимися условиями. Желаемых результатов можно достичь путем работы с ПЭВМ в диалоговом режиме. Сущность корреляционно-регрессионного метода заключается в определении зависимости показателя от различных факторов. Этот метод предполагает установление наличия корреляционной связи между прогнозируемым показателем и влияющими на него факторами, определение формы связи, формирование уравнения и осуществление прогноза на его основе. Форма связи характеризует изменение значений одного признака от изменения другого. Она может быть линейной и нелинейной. Одновременно с установлением формы связи определяется теснота связи, которую характеризует коэффициент корреляции (R).
2. ПРАКТИЧЕСКОЕ ЗАДАНИЕ.
Спрогнозировать динамику изменения объема выпускаемой продукции предприятия за счет получения краткосрочного кредита под оборотные активы и финансовую устойчивость предприятия.
Таблица 2.1. – Исходные данные.
№ п/п | Показатели | Отчетный квартал | Стратегии | ||
1 | 2 | 3 | |||
1 | Внеоборотные активы (ВА) | 430 | 430 | 430 | 430 |
2 | Оборотные активы (ОА), в т.ч. | 17800 | 19667,19 | 21446,75 | 23228,48 |
- | дебиторская задолженность (ДЗ) | 9100 | 10266,19 | 11433,33 | 12600 |
3 | Капитал и резервы (КР) | 6230 | 6810 | 7385,70 | 7963,56 |
4 | Краткосрочные пассивы (КП), в т. ч. | 12000 | 13287,19 | 14491,05 | 15694,92 |
- | заемные средства (ЗС) | 0 | 2148,15 | 4296,3 | 6444,44 |
- | кредиторская задолженность (КЗ) | 12000 | 11139,04 | 10194,75 | 9250,48 |
5 | Актив (А) | 18230 | 20097,19 | 21876,75 | 23658,48 |
6 | Объем выручки (В) | 15000 | 16500 | 18000 | 19500 |
7 | Себестоимость продукции (С) | 10900 | 11646 | 12334 | 13080 |
8 | Операционная прибыль (БП) | 4100 | 4844 | 5666 | 6420 |
9 | Чистая прибыль (ЧП) | 3075 | 3633 | 4249,5 | 4815 |
10 | Коэффициенты оборачиваемости: | ||||
- | активов (Ка) | 0,82 | 0,82 | 0,82 | 0,82 |
- | оборотных активов (Коа) | 0,84 | 0,84 | 0,84 | 0,84 |
- | дебиторской задолженности (Кдз) | 1,65 | 1,61 | 1,57 | 1,55 |
- | кредиторской задолженности (Ккз) | 1,25 | 1,48 | 1,77 | 2,11 |
11 | Коэффициенты: | ||||
- | текущей ликвидности (Ктл) | 1,48 | 1,48 | 1,48 | 1,48 |
- | обеспеченности собственными средствами (Косс) | 0,32 | 0,32 | 0,32 | 0,32 |
12 | Чистая рентабельность, % : | ||||
- | активов (Ra) | 16,87 | 18,08 | 19,42 | 20,35 |
- | собственных средств (Rcc) | 49,36 | 53,35 | 57,54 | 60,46 |
- | продукции (Rп) | 28,21 | 31,20 | 34,45 | 36,81 |
Определить наиболее предпочтительную стратегию развития предприятия по показателю чистой прибыли предприятия при условии, что норма прибыли для данного предприятия составляет 27 % (а = 0,27), ставка банковского процента – 21 % (СПБ = 0,21), налог на прибыль составляет 25% (в = 0,25). При этом вероятность реализации продукции по первой пессимистической стратегии составляет - 92 %, по второй (наиболее вероятной) – 83 %, по третьей (оптимистической) – 75 %.