2. Проверка случайности последовательности ei проводится с помощью критерия пиков (поворотных точек). Каждое значение ряда (ei) сравнивается с двумя, рядом стоящими. Точка считается поворотной, если она либо больше и предыдущего и последующего значения, либо меньше и предыдущего и последующего значения.
В случайном ряду должно выполняться строгое неравенство:
, | (6.14) |
где p - число поворотных точек;
[ ] - целая часть результата вычислений.
3. При проверке независимости значений ei определяется отсутствие в остаточном ряду автокорреляции, под которой понимается корреляция между элементами одного и того же числового ряда. В нашем случае автокорреляция - это корреляция ряда e1, e2, e3 ... с рядом eL+1, eL+2, eL+3 ... Число L характеризует запаздывание (лаг). Корреляция между соседними членами ряда (т.е. когда L = 1) называется автокорреляцией первого порядка. Далее для остаточного ряда будем рассматривать зависимость между соседними элементами ei.
Значительная автокорреляция говорит о том, что спецификация регрессии выполнена неправильно (неправильно определен тип зависимости).
Наличие автокорреляции может быть выявлено при помощи d-критерия Дарбина-Уотсона. Значение критерия вычисляется по формуле:
. | (6.15) |
Эта величина сравнивается с двумя табличными уровнями: нижним - d1 и верхним - d2. Соответствующая статистическая таблица приведена в приложении A. Если полученное значение d больше двух, то перед сопоставлением его нужно преобразовать:
d' = 4 - d. |
Если d (или d') находится в интервале от нуля до d1 , то значения остаточного ряда сильно автокоррелированы.
Если значение d-критерия попадает в интервал от d2 до 2, то автокорреляция отсутствует.
Если d1 < d< d2 - однозначного вывода об отсутствии или наличии автокорреляции сделать нельзя и необходимо использовать другой критерий, например, коэффициент автокорреляции первого порядка:
. | (6.16) |
Если |r(1)| окажется меньше табличного (при n<15 rтабл = 0,36), то гипотеза о наличии автокорреляции отвергается.
4. Соответствие остаточного ряда нормальному распределению проще всего проверить при помощи RS-критерия:
, | (6.17) |
где emax - максимальное значение ряда остатков;
emin - минимальное значение ряда остатков;
- среднеквадратическое отклонение значений остаточного ряда.Если рассчитанное значение попадает между табулированными границами с заданным уровнем вероятности, то гипотеза о нормальном распределении принимается. Соответствующая статистическая таблица приведена в приложении Б.
Для характеристики точности модели наиболее часто вычисляют среднюю относительную ошибку:
. | (6.18) |
В отношении величины средней относительной ошибки, как правило, делают следующие выводы. Величина менее 5% свидетельствует о хорошем уровне точности, ошибка до 15% считается приемлемой.
12. Построение точечных и интервальных прогнозов
C помощью построенной регрессионной модели можно не только анализировать какой-либо процесс, но и прогнозировать значения зависимой переменной при каких-либо заданных значениях факторов.
Модель регрессии позволяет проводить как экстраполяцию, так и интерполяцию значений. Интерполяция - прогнозирование значений зависимой переменной y для значений фактора x, принадлежащих интервалу [xmin; xmax]. Экстраполяция - прогнозирование значений зависимой переменной y для значений фактора x, выходящих за границы интервала [xmin; xmax], чаще всего, при x > xmax.
Точечный прогноз получается путем простой подстановки соответствующих значений x в уравнение регрессии.
Зачастую значения факторов, для которых нужно сделать прогноз значения зависимой переменной, получают на основе среднего прироста значений фактора внутри выборочной совокупности:
, | (6.19) |
где xmax и xmin - соответственно, максимальное и минимальное значение переменной x в выборочной совокупности.
При выполнении экстраполяции для определения конкретного значения х, используемого для расчета прогнозного значения y, можно использовать формулу:
xk = xmax + ∙ k , | (6.20) |
при прогнозе на один шаг k = 1, на два шага - k = 2 и т.д.
Подставляя полученное значение в уравнение регрессии, получим точечный прогноз величины y.
Однако вероятность точного "попадания" значения y в эту точку достаточно мала. Поэтому представляет интерес вычисление перспективных оценок значений y в виде доверительных интервалов.
Доверительные границы прогноза определяются по формуле:
граница прогноза = k ± Uk, | (6.21) |
где
k - точечный прогноз величины y,Uk - величина отклонения от точечного значения, соответствующая исследуемой точке xk и заданному уровню вероятности.
Величина Uk для линейной модели рассчитывается по формуле:
. | (6.22) |
где S - среднеквадратическое отклонение значений остаточного ряда из формулы (6.17),
kp - табличное значение t-статистики Стьюдента (соответствующая статистическая таблица приведена в приложении В) для заданной вероятности попадания прогнозируемой величины внутрь доверительного интервала.
И если построенная модель регрессии адекватна, то с выбранной вероятностью можно утверждать, что при сохранении сложившихся закономерностей функционирования изучаемой системы прогнозируемая величина попадет в интервал, образованный нижней и верхней границами.
Приложение А.
Значения критерия Дарбина-Уотсона
В таблице приведены значения критерия Дарбина-Уотсона для уровня значимости 5% (m - число независимых переменных уравнения регрессии).
Число наблюдений (n) | m = 1 | m = 2 | m = 3 | m = 4 | m = 5 | |||||
d1 | d2 | d1 | d2 | d1 | d2 | d1 | d2 | d1 | d2 | |
15 | 1,08 | 1,36 | 0,95 | 1,54 | 0,82 | 1,75 | 0,69 | 1,97 | 0,56 | 2,21 |
Приложение Б.
Критические границы отношения R/S
Объем выборки (n) | Нижние границы | Верхние границы | ||||||||||
Вероятность ошибки | ||||||||||||
0,000 | 0,005 | 0,01 | 0,025 | 0,05 | 0,10 | 0,10 | 0,05 | 0,025 | 0,01 | 0,005 | 0,000 | |
3 | 1,732 | 1,735 | 1,737 | 1,745 | 1,758 | 1,782 | 1,997 | 1,999 | 2,000 | 2,000 | 2,000 | 2,000 |
Приложение В.
Процентные точки распределения Стьюдента