Смекни!
smekni.com

Валовий дохід від різних варіантів здійснення виробничої діяльності (стр. 8 из 8)

б) обчислюємо факторну дисперсію, використовуючи розрахунки табл. 2.5

в) розраховуємо середні помилки параметрів регресії

;

г) визначаємо фактичні значення t-критерію Стьюдента для параметрів a і b

д) по додатку Г знаходимо критичне значення t-критерію Стьюдента для числа ступенів свободи

і рівня значущості
= 0,05 і порівнюємо його з фактичними значеннями t-критерію для параметрів a і b. Так як tbфакт(48,12)>tтабл(2,0484) ,то параметр вважається значущим, і ta факт(-7,47)>tтабл(2,0484), отже також вважається значущим.

е) будуємо довірчі інтервали для оцінки істинних значень параметрів a і b, що можуть мати місце в генеральній сукупності

; tтабл = 2,0484

-337,828 ≤ -265,157 ≤ -192,486

.

1,520 ≤ 1,588 ≤ 1,656

Поряд з перевіркою окремих параметрів зробимо перевірку значущості рівняння регресії в цілому, тобто перевірку адекватності моделі. Ця задача розв'язується за допомогою F-критерію Фишера:

Fтабл = 4,20; Fрозр = 2254,389.

де m – число параметрів у рівнянні регресії (для моделі парної регресії m=2).

Це значення порівнюємо із критичним значенням, яке знаходимо по таблиці додатку E для обраного рівня значущості, рівного 0,05, на перетинанні стовпця, що відповідає числу ступенів свободи

, і рядка, що відповідає числу ступенів свободи
. Отже, розрахункове значення більше критичного Fрозр > Fтабл. Таким чином модель можна вважати значущою на даному рівні довірчої імовірності.

Висновок

Групування початкових даних необхідне для аналізу структури і закономірностей розподілу показників (у відповідальних дослідженнях угрупування проводять для кожного показника, що вивчається), тобто тільки для результативного показника, але різними способами. Групування із нерівновеликими інтервалами застосовується для описання статистичних даних маючи явну асиметрію розподілу частот та частостей. Ширину та межі цих інтервалів установлюють на основі логічного аналізу попередніх даних про якісні і кількісні характеристики вивчаючого явища.

Якщо варіація ознаки виявляється в порівняно вузьких межах і розподіл носить більш менш рівномірний характер, то будують угрупування з рівновеликими інтервалами.

Нерівні інтервали застосовуються в статистиці, коли значення ознаки варіюють нерівномірно і в значних розмірах, що характерне для більшості соціально – економічних явищ, особливо при аналізі макроекономічних показників. Нерівні інтервали можуть бути прогресивно зростаючі або убуваючи в арифметичній або геометричній прогресії.

Власне – випадкова вибірка полягає у відборі одиниць з генеральної сукупності на вдачу або наугад, без яких – або елементів системності . Проте перш ніж провести власне – випадковий відбір, необхідно переконатися, що всі без виключення одиниці генеральної сукупності мають абсолютно рівні шанси попадання у вибірку, в списках або переліку відсутні пропуски, ігнорування окремих одиниць і т.п. Власне – випадковий відбір може бути як повторним, так і безповторним.

В статистиці для опису поведінки випадкових дискретних і безперервних величин використовуються різні закони розподілу. Нормальний закон використовується для опису розподілу випадкових безперервних величин.

Основна задача аналізу варіаційних рядів – виявлення справжньої закономірності розподілу шляхом виключення впливу другорядних, випадкових для даного розподілу чинників – досягається шляхом збільшення об'єму досліджуваної сукупності при одночасному зменшенні інтервалу ряду

Статистика – суспільна наука, яка вивчає кількісну сторону якісно певних масових соціально – економічних явищ і процесів, їх структуру і розподіл, розміщення в просторі, рух в часі, виявляючи діючу кількісну залежність, тенденції і закономірності, причому в конкретних умовах місця і часу

Мета статистичного дослідження, як і будь-якого наукового дослідження, - розкриття сутності масових явищ і процесів, властивими їм закономірностями. Відмітної особливістю цих закономірностей є те, що вони відносяться не до кожної окремої одиниці сукупності, а до всієї маси одиниць в цілому.

Проаналізувавши дані табл. 3.7 можна зробити такі висновки. Сукупності показників У, Х1, Х2 та Х5 не однорідні, оскільки їх коефіцієнти варіації більші ніж 33%. А сукупності показників Х3 та Х4 являються однорідними, бо значення їх коефіцієнтів варіації значно менше 33%.Отже, чим менше значення коефіцієнта варіації, тим однорідніші об'єкти досліджуваної сукупності і надійніші рішення, прийняті з використанням описової статистики.

Показники № 1, 2, 3 та № 36, 35, 34 різко відрізняються від всіх інших спостережень. Тому поступово відкидаючи їх один за одним і перераховуючи коефіцієнт варіації для показників Y, X1 ми дійшли висновку, що всіх їх необхідно виключити із сукупності. Лише в цьому випадку коефіцієнт варіації для даних показників буде задовольняти необхідну умову k вар ≤ 33%.

Проаналізувавши дані, які ми отримали можна зробити висновок, що у нас правостороння асиметрія

>Ме>Мо, 5419,3>5351,5>4677,5.

Ех<0, а це означає, що розподіл низковершинний.

Так як Х2розр=3,09 ≤ Х2табл=7,81 то з імовірністю 95% можна стверджувати, що в основі емпіричного розподілу підприємств по величині валового доходу лежить закон нормального розподілу, а розбіжності між теоретичними й емпіричними частотами пояснюються випадковими факторами.

Так як tрозр > tтабл, - це означає, що лінійний коефіцієнт кореляції вважається значущим, а зв'язок між х і Y – істотним.

Fрозн = 2254,389 > Fтаб = 4,20

Отже, розрахункове значення більше критичного Fрозр > Fтабл, модель вважається значущою на обраному рівні довірчої імовірності.

СПИСОК ЛІТЕРАТУРИ

1. Єріна А.М., Пальян З.О. Теорія статистики: Практикум. Київ: “Знання”, 1997. – 325 з.

2. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Загальна теорія статистики: Підручник. – М.: ИНФРА-м, 1998. – 416 з.

3. Статистика: Підручник / А.В. Головач, А.М Єріна, О.В. Козирєв та ін. – Київ: Віща школа, 1993. – 623 з.

4. Статистика: Підручник / С.С. Герасименко, А.В. Головач, А.М. Єріна та ін. – Київ: КНЕУ, 1998. – 468 з.

5. Теорія статистики: Підручник / Під ред. проф. Г.Л. Громико. – М.: ИНФРА-м, 2000. – 144 з.

6. Теорія статистики: Підручник / Під ред. Р.А. Шмойлової. 2-е изд., доп. і перераб. – М: Фінанси і статистика, 1998. – 576 з.

7. Теорія статистики: Уч. допомога / В.М. Гусаров – М.: Аудит, 1998. – 205з.