Наблюдаемые и модельные значения результативного признака у показаны на рис. 53.1.
Рис. 53.1. Наблюдаемые и модельные значения результативного признака у
Дифференцируя, с учетом (53.11) и (53.10), квадратичную форму Q по β0, β1, …, βk и приравнивая частные производные к нулю, получим систему нормальных уравнений
решая которую получим вектор-столбец оценок b, где b = (b0, b1, ..., bk)T. Согласно методу наименьших квадратов, вектор-столбец оценок коэффициентов регрессии получается по формуле
(53.12)ХT — транспонированная матрица X;
(ХTХ)-1 — матрица, обратная матрице ХTХ.
Зная вектор-столбец b оценок коэффициентов регрессии, найдем оценку уравнения регрессии
(53.13)или в матричном виде:
Оценка ковариационной матрицы вектора коэффициентов регрессии b определяется выражением
(53.14)где
(53.15)Учитывая, что на главной диагонали ковариационной матрицы находятся дисперсии коэффициентов регрессии, имеем
(53.16)Значимость уравнения регрессии, т.е. гипотеза Н0: β = 0 (β0,= β1 = βk = 0), проверяется по F-критерию, наблюдаемое значение которого определяется по формуле
(53.17)По таблице F-распределения для заданных α, v 1 = k + l,v2 = n – k - l находят Fкр.
Гипотеза H0 отклоняется с вероятностью α, если Fнабл > Fкр. Из этого следует, что уравнение является значимым, т.е. хотя бы один из коэффициентов регрессии отличен от нуля.
Для проверки значимости отдельных коэффициентов регрессии, т.е. гипотезы Н0: βj = 0, где j = 1, 2, ..., k, используют t-критерий и вычисляют tнабл(bj) = bj / bj. По таблице t-распределения для заданного α и v = п - k - 1 находят tкр.
Гипотеза H0 отвергается с вероятностью α, если tнабл > tкр. Из этого следует, что соответствующий коэффициент регрессии βj значим, т.е. βj ≠ 0. В противном случае коэффициент регрессии незначим и соответствующая переменная в модель не включается. Тогда реализуется алгоритм пошагового регрессионного анализа, состоящий в том, что исключается одна из незначительных переменных, которой соответствует минимальное по абсолютной величине значение tнабл. После этого вновь проводят регрессионный анализ с числом факторов, уменьшенным на единицу. Алгоритм заканчивается получением уравнения регрессии со значимыми коэффициентами.
Существуют и другие алгоритмы пошагового регрессионного анализа, например с последовательным включением факторов.
Наряду с точечными оценками bj генеральных коэффициентов регрессии βj регрессионный анализ позволяет получать и интервальные оценки последних с доверительной вероятностью γ.
Интервальная оценка с доверительной вероятностью γ для параметра βj имеет вид
(53.19)где tα находят по таблице t-распределения при вероятности α = 1 - γ и числе степеней свободы v = п - k - 1.
Интервальная оценка для уравнения регрессии
в точке, определяемой вектором-столбцом начальных условий X0 = (1, x , x ,,..., x )T записывается в виде (53.20)Интервал предсказания
n+1 с доверительной вероятностью у определяется как (53.21)где tα определяется по таблице t-распределения при α = 1 - γ и числе степеней свободы v = п - k - 1.
По мере удаления вектора начальных условий х0 от вектора средних ширина доверительного интервала при заданном значении γ будет увеличиваться (рис. 53.2), где
= (1, ).Рис. 53.2. Точечная и интервальная
оценки уравнения регрессии .Мультиколлинеарность
Одним из основных препятствий эффективного применения множественного регрессионного анализа является мультиколлинеарность. Она связана с линейной зависимостью между аргументами х1, х2, ..., хk. В результате мультиколлинеарности матрица парных коэффициентов корреляции и матрица (XTX) становятся слабообусловленными, т.е. их определители близки к нулю.
Это приводит к неустойчивости оценок коэффициентов регрессии (53.12), завышению дисперсии s , оценок этих коэффициентов (53.14), так как в их выражения входит обратная матрица (XTX)-1, получение которой связано с делением на определитель матрицы (ХTХ). Отсюда следуют заниженные значения t(bj). Кроме того, мультиколлинеарность приводит к завышению значения множественного коэффициента корреляции.
На практике о наличии мультиколлинеарности обычно судят по матрице парных коэффициентов корреляции. Если один из элементов матрицы R больше 0,8, т.е. | rjl | > 0,8, то считают, что имеет место мультиколлинеарность, и в уравнение регрессии следует включать один из показателей — хj или xl.
Чтобы избавиться от этого негативного явления, обычно используют алгоритм пошагового регрессионного анализа или строят уравнение регрессии на главных компонентах.
Пример. Построение регрессионного уравнения
Согласно данным двадцати (п = 20) сельскохозяйственных районов, требуется построить регрессионную модель урожайности на основе следующих показателей:
у — урожайность зерновых культур (ц/га);
x1 — число колесных тракторов (приведенной мощности) на 100 га;
х2 — число зерноуборочных комбайнов на 100 га;
х3 — число орудий поверхностной обработки почвы на 100 га;
x4 — количество удобрений, расходуемых на гектар;
х5 — количество химических средств оздоровления растений, расходуемых на гектар.
Исходные данные для анализа приведены в табл. 53.1.
Таблица 53.1
Исходные данные для анализа
Решение. С целью предварительного анализа взаимосвязи показателей построена матрица R — таблица парных коэффициентов корреляции.
Анализ матрицы парных коэффициентов корреляции показывает, что результативный признак наиболее тесно связан с показателем х4 — количеством удобрений, расходуемых на гектар (ryx4 = 0,58).
В то же время связь между аргументами достаточно тесная. Так, существует практически функциональная связь между числом колесных тракторов (x1) и числом орудий поверхностной обработки почвы x3(rx1x3) = 0,98.
О наличии мультиколлинеарности свидетельствуют также коэффициенты корреляции rx1x2 = 0,85 и rx3x2 = 0,88.
Чтобы продемонстрировать отрицательное влияние мультиколлинеарности, рассмотрим рассчитанное на ЭВМ регрессионное уравнение урожайности, включив в него все исходные показатели: