Смекни!
smekni.com

Курс социально-экономической статистики (стр. 174 из 182)

(53.55)

где Qt(v) — объем продукции, произведенной за период t на оборудовании, введенном в строй в период v; Lt(v) — трудовые затраты в период t на обслуживание оборудования, введенного в строй в период v, и Кt(v) — основной капитал, введенный в строй в период v и использованный в период t. Параметр v в такой производственной функции отражает состояние технического прогресса. Затем для периода t строится агрегированная производственная функция, представляющая собой зависимость совокупного объема выпускаемой продукции Qt от общих затрат труда Lt, и капитала Кt на момент t. При использовании для построения производственной функции пространственной информации, т.е. данных о нескольких фирмах, соответствующих одному и тому же моменту времени, возникают проблемы другого рода. Так как результаты наблюдений относятся к разным фирмам, то при их использовании предполагается, что поведение всех фирм может быть описано с помощью одной и той же функции. Для успешной экономической интерпретации полученной модели желательно, чтобы все эти фирмы принадлежали одной и той же отрасли. Кроме того, считается, что они располагают примерно одинаковыми производственными возможностями и уровнями административного управления. Рассмотренные выше производственные функции носили детерминированный характер и не учитывали влияния случайных возмущений, присущих каждому экономическому явлению. Поэтому в каждое уравнение, параметры которого предстоит оценить, необходимо ввести и случайную переменную е, которая будет отражать воздействие на процесс производства всех тех факторов, которые не вошли в состав производственной функции в явном виде. Таким образом, в общем виде производственную функцию Кобба — Дугласа можно представить как

(53.56)

Мы получили степенную регрессионную модель, оценки параметров которой А, α и β можно найти методом наименьших квадратов, лишь прибегнув предварительно к логарифмическому преобразованию. Тогда для i-го наблюдения имеем

(53.57)

где Qi, Кi и Li соответственно объемы выпуска, капитальных и трудовых затрат для i-го наблюдения (i = 1, 2, ..., п), а п — объем выборки, т.е. число наблюдений, используемых для получения оценок ln

,
и
параметров производственной функции. Относительно εi обычно предполагается, что они взаимно независимы между собой и εi Î N(0, σ ). Исходя из априорных соображений значения α и β должны удовлетворять условиям 0 < α < 1 и 0 < β < 1. Если предположить, что с изменением масштабов производства уровень эффективности остается постоянным, то, приняв, что β = 1 — α, имеем

(53.58)

или

и

(53.59)

Прибегнув к такой форме выражения производственной функции, можно устранить влияние мультиколлинеарности между ln К и ln L. В качестве примера приведем полученную на основе данных о 180 предприятиях, выпускающих верхнюю одежду, модель Кобба — Дугласа:

В скобках указаны значения t-критерия для коэффициентов регрессии уравнения. При этом множественный коэффициент детерминации и расчетное значение статистики F-критерия, соответственно равные r2 = 0,46 и F = 12,7, указывают на значимость полученного уравнения. Оценки параметров α и β функции Кобба — Дугласа равны

= 0,19 и
=
0,95 (1 - 0, 19 + 0,14). Так как
= 1,14 > 1, то можно предположить, что происходит некоторое повышение эффективности по мере расширения масштаба производства. Параметры модели показывают также, что при увеличении капитала К на 1% объем выпуска повышается в среднем на 0,19%, а при увеличении трудовых затрат L на 1% объем выпуска возрастает в среднем на 0,95%.

Система одновременных эконометрических уравнений

Систему взаимосвязанных тождеств и регрессионных уравнений, в которой переменные могут одновременно выступать как результирующие в одних уравнениях и как объясняющие в других, принято называть системой одновременных (эконометрических) уравнений. При этом в соотношения могут входить переменные, относящиеся не только к моменту t, но и к предшествующим моментам. Такие переменные называются лаговыми (запаздывающими). Тождества отражают функциональную связь переменных. Техника оценивания параметров системы эконометрических уравнений имеет свои особенности. Это связано с тем, что в регрессионных уравнениях системы независимые переменные и случайные ошибки оказываются коррелированы между собой. Достаточно хорошо изучены статистические свойства и вопросы оценивания систем линейных уравнений. Будем рассматривать линейную модель следующего вида:

(53.60)

где i = 1, 2, ..., G; t = 1, 2, ..., n;

yit значение эндогенной (результирующей) переменной в момент t;

xit значение предопределенной переменной, т.е. экзогенной (объясняющей) переменной в момент t или лаговой эндогенной переменной;

uit —случайные возмущения, имеющие нулевые средние.

Совокупность равенства (53.60) называется системой одновременных уравнений в структурной форме. Наличие априорных ограничений, связанных, например, с тем, что часть коэффициентов считаются равными нулю, обеспечивает возможность статистического оценивания оставшихся. В матричном виде систему уравнений можно представить как

(53.61)

где В — матрица порядка G х G, состоящая из коэффициентов при текущих значениях эндогенных переменных;

Г — матрица порядка G х К, состоящая из коэффициентов экзогенных переменных.

yt = (y1t,…, yGti)T, xt = (x1t, … xkt)T, εt = (ε1t, … εGt)T векторы-столбцы значений соответственно эндогенных и экзогенных переменных, случайных ошибок. Следует отметить, что Mεt = 0; Σ(ε) = MεtεtT =

, где En — единичная матрица. Таким образом, если Mεt1εt2 = 0 при t1 ≠ t2 и t1, t2 = 1, 2, ..., п, то случайные ошибки независимы между собой. Если дисперсия ошибки постоянна Mε
=
=
2 и не зависит от t и хt, то это свидетельствует о гомоскедастичности остатков. Условием гетероскедастичности является зависимость значений Мε
=
от t и xt. Умножив все элементы уравнения (53.61) слева на обратную матрицу B-1, получим приведенную форму системы одновременных уравнений:

(53.62)

Среди систем одновременных уравнений наиболее простыми являются рекурсивные системы, для оценивания коэффициентов которых можно использовать метод наименьших квадратов. Систему (53.61) одновременных уравнений называют рекурсивной, если выполняются следующие условия:

1) матрица значений эндогенных переменных

является нижней треугольной матрицей, т.е. βij = 0 при j > 1 и βii = 1;

2) случайные ошибки не зависимы друг от друга, т.е. σii > 0, σij = 0 при i ≠ j, где i, j = 1, 2, ..., G. Отсюда следует, что ковариационная матрица ошибок МεtεtT = Σ(ε) диагональна;