Смекни!
smekni.com

Уравнения линейной регрессии, коэффициент регрессии (стр. 2 из 4)

сравниваем с двумя табличными:

, следовательно, свойство выполняется, остатки независимы.

3. Подчинение остатков нормальному закону (R/S критерий).

Расчётный критерий сравниваем с двумя табличными, если расчётный критерий попадает внутрь табличного интервала, то свойство выполняется.

(2,67;3,57)

1,216 < 2,67, следовательно, свойство не выполняется, остатки не подчинены нормальному закону.

4. Проверка равенства М(Е)=0, средняя величина остатков равна 0 (критерий Стьюдента).

Если

<
, то свойство выполняется.

2,2281

, следовательно, свойство выполняется.

5. Гомоскедастичность остатков, то есть дисперсия остатков (

) одинаково для каждого значения
(остатки имеют постоянную дисперсию).

Если дисперсия остатков неодинакова, то имеет место гетероскедастичность.

Если предпосылки не выполняются, то модель нужно уточнять. Применяем тест Голдфельд-Квандта:

1) упорядочить (ранжировать) наблюдения по мере возрастания фактора «Х».

2) исключить d-средних наблюдений.


,

где n – количество наблюдений.

2) разделить совокупность на две группы: с малыми и большими значениями «Х» и для каждой из частей найти уравнение регрессии.

3) найти остаточную сумму квадратов отклонений (

) для каждого уравнения регрессии.

4) применяют критерий Фишера:

Если

, то гетероскедастичность имеет место, то есть пятая предпосылка не выполняется.

X Y
17 22
22 27
10 22
7 19
12 21
21 26
14 20
7 15
20 30
3 13

Упорядочим наблюдениям по мере возрастания переменной Х:

X Y
3 13
7 19
7 15
10 22
12 21
14 20
17 22
20 30
21 26
22 27

X5=12; Y5=21 и Х6=14; Y6=20 исключаем.

; n=10
x y
3 13 9 12,517 0,483 0,2333
7 19 49 17,569 1,431 2,0478
7 15 49 17,569 -2,569 6,5998
10 22 100 21,358 0,642 0,4122
27 69 207 * -0,013 9,2930

n=4

x y
17 22 289 23,25 -1,25 1,5625
20 30 400 26,25 3,75 14,0625
21 26 441 27,25 -1,25 1,5625
22 27 484 28,25 -1,25 4,5625
80 105 1614 * 0 18,75


n=4

, так как

, значит, пятая предпосылка выполняется, следовательно, модель нужно адекватна.

4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α=0,05).


;

x y
17 26 289 24,718 1,282 1,6435 13,69
22 27 484 28,523 -1,523 2,3195 75,69
10 22 100 19,391 2,609 6,8069 1,89
7 19 49 17,108 1,892 3,5797 39,9
12 21 144 20,913 0,087 0,0076 1,69
21 26 441 27,762 -1,762 3,1046 59,29
14 20 196 22,435 -2,435 5,9292 0,49
7 15 49 17,108 -2,108 4,4437 39,69
20 30 400 27,001 2,999 8,9940 44,89
3 13 9 14,064 -1,064 1,1321 106,09
133 219 2161 * -0,023 37,9608 392,1