Федеральное агентство по образованию
Всероссийский заочный финансово-экономический институт
Контрольная работа
по дисциплине «Эконометрика»
Архангельск
2008
Условие задачи
По предприятиям лёгкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.).
Требуется:
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков
; построить график остатков.3. Проверить выполнение предпосылок МНК.
4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α=0,05).
5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера (α=0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости α=0,1, если прогнозное значение фактора X составляет 80% от его максимального значения.
7. Представить графически фактические и модельные значения Y точки прогноза.
8. Составить уравнения нелинейной регрессии:
· Гиперболической;
· Степенной;
· Показательной.
Привести графики построенных уравнений регрессии.
9. Для указанных моделей найти коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.
Х | 17 | 22 | 10 | 7 | 12 | 21 | 14 | 7 | 20 | 3 |
Y | 26 | 27 | 22 | 19 | 21 | 26 | 20 | 15 | 30 | 13 |
регрессия уравнение стьюдент фишер аппроксимация
Решение задачи.
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
Для нахождения параметров уравнения линейной регрессии
решим систему нормальных уравнений:n=10
x | y | x^2 | xy |
17 | 26 | 289 | 442 |
22 | 27 | 484 | 594 |
10 | 22 | 100 | 220 |
7 | 19 | 49 | 133 |
12 | 21 | 144 | 252 |
21 | 26 | 441 | 546 |
14 | 20 | 196 | 280 |
7 | 15 | 49 | 105 |
20 | 30 | 400 | 600 |
3 | 13 | 9 | 39 |
133 | 219 | 2161 | 3211 |
Найдём параметры уравнения линейной регрессии, используя надстройку «Мастер диаграмм» в Excel, тип диаграммы – точечная, выделяем столбцы (А1:В11), выбираем команду «Добавить линию тренда», выбираем 2 последние команды:
- показывать уравнение на диаграмме;
- поместить на диаграмму величину достоверности аппроксимации.
Общий вид уравнения регрессии имеет вид:
коэффициент регрессии.Величина коэффициента регрессии (
) показывает, на сколько в среднем изменяется значение результата с изменением фактора на 1 единицу. Т.о в нашем случае, с увеличением объема капиталовложений (Х) на 1 млн.руб. объём выпуска продукции (У) возрастает в среднем на 0,761 млн.руб. (рис. 1).X | Y |
17 | 26 |
22 | 27 |
10 | 22 |
7 | 19 |
12 | 21 |
21 | 26 |
14 | 20 |
7 | 15 |
20 | 30 |
3 | 13 |
а0=11,781 | |
а1=0,761 |
Рис. 1
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков . Построить график остатков.
Вычислим остатки по формуле:
x | y | m | |||
17 | 26 | 24,718 | 1,282 | * | 1,6435 |
22 | 27 | 28,523 | -1,523 | 1 | 2,3195 |
10 | 22 | 19,391 | 2,609 | 1 | 6,8069 |
7 | 19 | 17,108 | 1,892 | 0 | 3,5797 |
12 | 21 | 20,913 | 0,087 | 0 | 0,0076 |
21 | 26 | 27,762 | -1,762 | 0 | 3,1046 |
14 | 20 | 22,435 | -2,435 | 1 | 5,9292 |
7 | 15 | 17,108 | -2,108 | 0 | 44437 |
20 | 30 | 27,001 | 2,999 | 1 | 8,9940 |
3 | 13 | 14,064 | -1,064 | * | 1,1321 |
133 | 219 | * | -0,023 | 4 | 37,9608 |
Оценка дисперсии остатков:
По следующим данным строим график остатков (рис. 2):
Y | Е(t) |
26 | 1,282 |
27 | -1,523 |
22 | 2,609 |
19 | 1,892 |
21 | 0,087 |
26 | -1,762 |
20 | -2,435 |
15 | -2,108 |
30 | 2,999 |
13 | -1,064 |
Рис. 2
3. Проверить выполнение предпосылок МНК.
1. Случайный характер остатков (критерий поворотных точек, критерий пиков):
,где n- количество наблюдений;
m – количество поворотных точек (пиков).
Точка считается поворотной, если она больше предшествующей и последующей (или меньше).
является поворотной точкой является поворотной точкой не является поворотной точкой не является поворотной точкой не является поворотной точкой является поворотной точкой не является поворотной точкой является поворотной точкой.m=4
m=4>2, следовательно неравенство выполняется, свойство выполняется.
2. Независимость значений остатков (отсутствие автокорреляции). Критерий Дарбина-Уотсона.
x | y | ||||
17 | 26 | 24,718 | 1,282 | 1,6435 | * |
22 | 27 | 28,523 | -1,523 | 2,3195 | 7,8680 |
10 | 22 | 19,391 | 2,609 | 6,8069 | 17,0734 |
7 | 19 | 17,108 | 1,892 | 3,5797 | 0,5141 |
12 | 21 | 20,913 | 0,087 | 0,0076 | 3,2580 |
21 | 26 | 27,762 | -1,762 | 3,1046 | 3,4188 |
14 | 20 | 22,435 | -2,435 | 5,9292 | 0,4529 |
7 | 15 | 17,108 | -2,108 | 4,4437 | 0,1069 |
20 | 30 | 27,001 | 2,999 | 8,9940 | 26,0814 |
3 | 13 | 14,064 | -1,064 | 1,1321 | 16,5080 |
133 | 219 | * | -0,023 | 37,9608 | 75,2816 |