В матричной форме модель имеет вид:
где
- вектор-столбец фактических значений зависимой переменной размерности n;
- матрица значений объясняющих переменных размерности n*(k+1);
- вектор-столбец неизвестных параметров, подлежащих оценке, размерности (k+1);
- вектор-столбец случайных ошибок размерности n с математическим ожиданием ME=0 и ковариационной матрицей
Оценки неизвестных параметров
Далее подставив выражение
получаем скалярную сумму квадратов
Условием обращения полученной суммы в минимум является система нормальных уравнений:
В результате дифференцирования получается:
При замене вектора неизвестных параметров β на оценки, полученные методом наименьших квадратов, получаем следующее выражение:
Далее умножив обе части уравнения слева на матрицу
Так как
Полученные оценки вектора b являются не смещенными и эффективными.
Ковариационная матрица вектора b имеет вид:
Элементы главной диагонали этой матрицы представляют собой дисперсии вектора оценок b. Остальные элементы являются значениями коэффициентов ковариации:
Таким образом, оценка
Несмещенная оценка остаточной дисперсии определяется по формуле:
k – число объясняющих переменных.
Для проверки значимости уравнения регрессии используют F-критерий дисперсионного анализа, основанного на разложении общей суммы квадратов отклонений на составляющие части:
Для проверки гипотезы
В случае значимости уравнения регрессии проверяется значимость отдельных коэффициентов регрессии. Для проверки нулевой гипотезы
Коэффициент регрессии
В многошаговом регрессионном анализе наиболее известны три подхода:
1. Метод случайного поиска с адаптацией. Осуществляется путем построения нескольких уравнений регрессии на основе формально разработанного принципа включения факторов и последующего выбора лучшего уравнения с точки зрения определенного критерия.
2. Метод включения переменных, основанный на построении уравнения регрессии по одному значимому фактору и последовательном добавлении всех остальных статистически значимых переменных путем расчета частных коэффициентов корреляции и F-критерия при проверке значимости вводимого в модель фактора.
3. Метод отсева факторов по t-критерию. Данный метод заключается в построении уравнений регрессии по максимально возможному количеству объясняющих переменных и последующем исключении статистически не существенных факторов.
Наиболее оправданным является использование многошагового регрессионного анализа, основанного на оценке значимости коэффициентов регрессии с помощью t-критерия Стьюдента. Данный метод и был использован при анализе продолжительности жизни населения стран Африки в данной курсовой работе, потому что его применение четко формализовано, и в то же время на различных стадиях построения модели можно производить качественный экономический анализ. Рассмотрим его более подробно.
Итак, на первом этапе строится уравнение регрессии по переменным, предположительно влияющим на исследуемую зависимую переменную. Затем с помощью определенных критериев исключаются те переменные, которые оказывают статистически несущественное влияние. На этом подходе основан метод отсева факторов по t-критерию в многошаговом регрессионном анализе.
Применение t-критерия при отборе существенных факторов основано на следующей предпосылке регрессионного анализа: если выполняется условие, что Ei распределены нормально, то величина