Содержание
1. Анализ рядов распределения
2. Анализ рядов динамики
3. Индексы
4. Выборочное наблюдение
Список литературы
По данным ряда распределения своего вариант (табл. I) выполнить следующие расчеты. 1.1. Построить ряд распределения. Изобразить ряд графически в виде гистограммы (полигона) и кумуляты распределения. Сделать вывод о характере распределения. 1.2. Рассчитать моду, медиану, первый и третий квартиль. 1.3. Рассчитать средний уровень признака в совокупности; сравнить значение моды, медианы, средней и сделать вывод об асимметрии распределения. 1.4. Рассчитать показатели вариации: размах вариации, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение, коэффициент вариации. 1.5. Указать другие методы расчета среднего уровня и дисперсии. 1.6. Показать методику расчет дисперсии альтернативного признака. 1.7. Назвать виды дисперсии в совокупности, разбитой на группы, сформулировать правило их сложения и методику расчета показателя тесноты связи между изучаемыми признаками.
Решение
1.1. Построим ряд распределения.
Таблица А Распределение покупателей по стоимости покупок канцелярских товаров
Группы по стоимости покупок | Частота |
18 – 24 | 18 |
24 – 28 | 27 |
28 – 32 | 35 |
32 – 36 | 41 |
36 – 40 | 30 |
40 – 44 | 21 |
44 и выше | 15 |
Итого (объем ряда) | 159 |
Гистограмма (полигон)
Кумулята распределения.
По виду графиков делаем вывод о нормальном распределении признака.
1.2. Рассчитаем моду, медиану, первый и третий квартиль.
Модальным является интервал (28, 32), содержащий наибольшее число покупателей. Модальный размер стоимости покупок:
Медиана определяется по формуле:
.Медианным интервалом является интервал [28 - 32], содержащий
-го покупателя. Медианный размер стоимости покупок: =30,774.Первый квартиль определяется по формуле:
Он задается интервалом [24 - 28], содержащим
-го покупателя.Третий квартиль определяется по формуле
Он задается интервалом [32 - 36], содержащим 3*
-го покупателя.1.3. Переходим от интервального ряда к моментному, приняв за стоимость покупок середину соответствующего интервала.
№интервала | СерединаИнтервала( ) | ЧислоПокупателей( ) | |
1 | 21 | 14 | 294 |
2 | 26 | 36 | 936 |
3 | 30 | 43 | 1290 |
4 | 34 | 27 | 918 |
5 | 38 | 20 | 760 |
6 | 42 | 15 | 630 |
7 | 46 | 4 | 184 |
Всего | 159 | 5012 |
Находим средний уровень признака в совокупности по формуле средней арифметической взвешенной:
.Получаем:
5012/159=31,522.Так как мода и медиана меньше среднего уровня признака, то коэффициент асимметрии положителен.
1.4. Для расчетов показателей вариации составляем вспомогательную таблицу.
№интервала | Серединаинтервала( ) | Числопокупателей( ) | ||||
1 | 21 | 14 | 10,522 | 147,308 | 110,713 | 1549,978 |
2 | 26 | 36 | 5,522 | 198,792 | 30,493 | 1097,734 |
3 | 30 | 43 | 1,522 | 65,447 | 2,317 | 99,610 |
4 | 34 | 27 | 2,478 | 66,906 | 6,140 | 165,791 |
5 | 38 | 20 | 6,478 | 129,560 | 41,964 | 839,286 |
6 | 42 | 15 | 10,478 | 157,170 | 109,788 | 1646,823 |
7 | 46 | 4 | 14,478 | 57,912 | 209,612 | 838,448 |
Всего | 159 | 823,094 | 6237,673 |
Размах вариации:
= 46 – 21=25.Среднее линейное отклонение:
= 823,094/ 159 = 5,177,Дисперсия:
= 6237,673/ 159 = 39,231,Среднее квадратическое отклонение
= 6,263,Коэффициент вариации
= 6,263*100/ 31,522 = 19,87%.1.5. Методы расчета среднего уровня:
средний уровень ряда по формуле средней простой
,по формуле средней хронологической
для моментных рядов; по формуле средней гармонической взвешенной
.Дисперсию можно вычислить по формуле:
.1.6. Рассчитать дисперсию альтернативного признака можно следующим образом: вычислить значения
и Тогда .1.7. В совокупности, разбитой на группы можно вычислить:
межгрупповую дисперсия по формуле:
среднюю из групповых дисперсий по формуле:
Правило сложения дисперсий
.2.1. Построить ряд динамики. Изобразить ряд в виде линейного графика. Сделать вывод о наличии тенденции изменения уровня и ее характере (увеличение уровня, снижение уровня, переломы тенденции, периоды одинакового типа тенденции).
2.2. Рассчитать среднюю хронологическую (ряд динамики интервальный). При разном направлении изменения уровней выделить однородные по тенденции периоды и рассчитать частные хронологические средние.
2.3. Рассчитать систему производных показателей ряда динамики (абсолютные приросты, темпы роста и прироста, абсолютные значения одного процента прироста).
2.4. Показать взаимосвязь цепных и базисных темпов роста и прироста.
2.5. Рассчитать средний абсолютный прирост. При разном направлении изменения уровней выделить однородные по тенденции периоды и рассчитать частные абсолютные приросты.
2.6. Рассчитать средний темп роста (три методики расчета). При разном направлении изменения уровней выделить однородные по тенденции периоды и рассчитать частные средние темпы роста.
2.7. Проанализировать тенденцию изменения уровня, самостоятельно избрав метод (скользящий средний уровень, аналитическое выравнивание по соответствующей модели). Выровненные значения показать на графике.
2.8. Проанализировать сезонные колебания объема выпуска продукции за три года. Рассчитать индексы сезонности. На графике изобразить сезонную волну.
Решение
2.1. Построим ряд динамики:
Годы | Выпуск продукции, тыс.усл.ед. |
1 | 1476 |
2 | 1529 |
3 | 1607 |
4 | 1598 |
5 | 1673 |
6 | 1702 |
7 | 1680 |
8 | 1658 |
9 | 1612 |
10 | 1639 |
Изобразим ряд в виде линейного графика.
По графику делаем следующие выводы: Первые 6 лет наблюдалось небольшое увеличение выпуска, затем – снижение и в последний год - рост уровня выпуска.
2.2. Так как ряд динамики интервальный среднюю хронологическую вычисляем по формуле:
= 16174/10= 1617,4.Среднее первых 4 лет: (1476+1529+1607+1598)/4= 1552,5
Среднее последних 4 лет: (1680+1658+1612+1639)/4=1647,25
2.3. Рассчитаем систему производных показателей ряда динамики (абсолютные приросты, темпы роста и прироста, абсолютные значения одного процента прироста) по формулам: