Смекни!
smekni.com

Статистика вивчення продуктивності великої рогатої худоби (стр. 5 из 6)


Рис. 3.1. – Побудова лінійної одномірної регресії Y=f(Xi) з використанням «електронних таблиць» Excel-2000

Рис. 3.2. – Побудова лінійної одномірної регресії Y=f(Xj) з використанням «електронних таблиць» Excel-2000


Рис. 3.3. – Побудова нелінійної одномірної регресії Y=f(Xi) з використанням «електронних таблиць» Excel-2000

Рис. 3.4. – Побудова нелінійної одномірної регресії Y=f(Xj) з використанням «електронних таблиць» Excel-2000

4.2 Аналіз множинної кореляції

4.2.1 Перевірка передумови проведення кореляційного аналізу

Лінійна багатовимірна модель (ЛБМ) Y=f (X1, X2) має такий вигляд [68]

y=β0+ β1x1+ … + βpxp (4.12)

y – залежна змінна – ендогенна змінна

x1, x2…xpзалежні змінні – екзогенні змінні.

У зв’язку з тим, що економетрична модель обов’язково має випадкову помилку, модель (3.21) переписується у вигляді (4.13)

y=β0+ β1x1+ … + βpxp(4.13)

де ε – випадкова помилка або перешкода.

Якщо після необхідних обчислень визначені чисельні значення коефіцієнтів β, то кажуть, що ми отримали оцінку коефіцієнтів моделі:

, тобто оцінкою коефіцієнта β є його чисельне значення b=
.

Якщо замінити у виразі (4.13) коефіцієнти моделі оцінками, то ми отримаємо такий вираз

(4.14)

Основними передумовами використання моделі (4.12–4.13), а такі моделі ще називаються регресійними багатовимірними моделями, є наступне:

1) M (ε)=0 математичне сподівання відхилення равно 0;

2) відхилення взаємонезалежні із змінними cov (xi,

)=0

3) для 2‑х визначень відхилень коефіцієнтів коваріації між ними також дорівнює 0 – cov

4) відхилення ε нормально розподілена величина з параметрами (0; 1)

ε=N (ε, 0; 1)

5) від виміру до виміру дисперсія відхилення не змінюється

П’ята властивість. носить спеціальну назву: гомоскедастичність (одно-рідність). Якщо умова 5) не виконана, то кажуть, що дисперсія має властивість гетероскедастичності.

Чисельний аналіз регресійної моделі починають з того, що визначають значення регресійних коефіцієнтів β1… βрта коефіцієнтів β0, який має спеціальну назву – вільний член.

Регресійні коефіцієнти визначають за допомогою методів найменших квадратів.

(4.15)

Візьмемо частичні похідні по кожному з виразів, дорівняти їх і отримаємо систему рівнянь

Ця система рівнянь має спеціальну назву – нормальна система.

(4.16)

Невідомі у системі (4.16) – це коефіцієнти в0, в1

х1, y1– ми маємо внаслідок спостережень

в0, в1– це коефіцієнти, які ми повинні визначити

n – кількість спостережень, вони нам завжди відомі.

4.2.2 Побудова множинного лінійного кореляційного рівняння, розрахунок коефіцієнтів регресії, перевірка суттєвості та визначення парних коефіцієнтів кореляції

Використовуючи таблицю вихідних даних (Додаток А), розраховуємо багатовимірну лінійну регресійну модель за допомогою «електронних таблиць» EXCEL-2000. Результати розрахунків наведені в табл. 4.1

Як видно з даних розрахунків табл. 4.1 – 4.2, лінійні багатовимірні рівняння регресії описують наступні статистичні процеси:

1. Рівняння багатовимірної лінійної регресії:

а) 2‑параметрична модель з «нульовим» вільним членом (n=30).

Y=0,6358*Xi+0,1293*Xj

б) 2‑параметрична модель з значущим вільним членом (n=30).

Y=-19,5974+0,6488*Xi+0,3335*Xj

2. Коефіцієнт детермінації для даних моделей:

а) Коефіцієнт детермінації R2 (2-параметрична модель з «нульовим» вільним членом) = 0,6076 (n=30), сила регресійного зв’язка – середньої щільності (0,36>

>0,75).

б) Коефіцієнт детермінації R2 (2-параметрична модель з значущим вільним членом (n=30).) = 0,6497 (n=30), сила регресійного зв’язка – середньої щільності (0,36>

>0,75).

Згідно з таблицями критичних значень критерія Фішера:

– для багатовимірної (і=2) лінійної вибірки з n‑1=29 величин табличне значення Fтабл = 1,93 при рівні довірчої ймовірності Р=0,95 [48].

Як видно з даних розрахунків (табл. 4.1 –4.2), проведених за допомогою «електронних таблиць» EXCEL-2000, фактичні значення критерія Фішера для багатовимірних вибірок (і=2) з n‑1=29 величин становлять:

а) F (2‑параметрична модель з «нульовим» вільним членом) = 21,6829 (n=30)> 3,33 (табл. критерій Фішера);


Таблиця 4.1. Результати розрахунків багатовимірної лінійної регресійної моделі Y=f (Xi, Xj) за допомогою «електронних таблиць» EXCEL-2000 (варіант з «нульовим» вільним членом)


Таблиця 4.2. Результати розрахунків багатовимірної лінійної регресійної моделі Y=f (Xi, Xj) за допомогою «електронних таблиць» EXCEL-2000 (варіант з значущим вільним членом)


б) F (2‑параметрична модель з значущим вільним членом) = 25,038 (n=30)> 3,33 (табл. критерій Фішера);

Тобто набагато перевищують мінімально-критеріальні значення по Фішеру і отримані регресійні багатовимірні рівняння є значущими.

Парні кореляції кореляції Пирсона обчислюються по формулі (наприклад для

):

(4.17)

Для перевірки значимості коефіцієнтів кореляції використовують

критерій. Коефіцієнт кореляції характеризує тісноту лінійного зв'язку між перемінними. Для цього знаходять
статистику:

(4.18)

Якщо

, то коефіцієнт кореляції значимий, у противному випадку – немає.

p – р-рівень, що відповідає

статистиці

Якщо р>0,05, то гіпотеза

:
не значимий не відхиляється.

Якщо р<0,05, то гіпотеза

:
не значимий відхиляється (коефіцієнт кореляції значимий).

Якщо

, то зв'язок строго функціональний

Якщо

, то зв'язок сильний (щильний)

Якщо

, то зв'язок середній

Якщо

, то зв'язок помірний

Якщо

, то зв'язок слабкий

Якщо

, то зв'язок відсутній (x, y некорелльовані)

Розрахунки, виконані спеціалізованою програмою «Статистика» дають наступні характеристики парних коефіцієнтів кореляції:

Для пари (Xi, Xj) коефіцієнт кореляції дорівнює r (Xi, Xj)=0,37,

p=0,044<0,05, отже, коефіцієнт кореляції значимий.

Для пари (Xi, Y) коефіцієнт кореляції дорівнює r (Xi, Y)=0,7467, p=0,000<0,05, отже, коефіцієнт кореляції значимий.

Для пари (Xj, Y) коефіцієнт кореляції дорівнює r (Xj, Y)=0,5583, p=0,001<0,05, отже, коефіцієнт кореляції значимий.

Множинний коефіцієнт кореляції розраховується за допомогою парних коефіцієнтів кореляції за формулою:

(4.19)

Що відповідає результатам програмних розрахунків, наведених в табл. 4.2.

4.2.3 Визначення множинного індексу кореляції, мажорантності парних та часткових коефіцієнтів, розрахунок коефіцієнта детермінації, часткових коефіцієнтів детермінації

Коефіцієнт детермінації показує частку розсіювання

відносно
, що порозумівається побудованою регресією. Це коефіцієнт кореляції в квадраті.