Смекни!
smekni.com

Статистичні коефіцієнти рентабельності роботи комерційних банків (стр. 7 из 11)

Знайдемо коефіцієнт детермінації і перевіримо адекватність отриманого рівняння лінійної регресії за критерієм Фішера. Коефіцієнт детермінації визначається наступним чином:

Коефіцієнт детермінації характеризує ту частину варіації результативної ознаки, яка відповідає лінійному рівнянню регресії.

При виконанні процедури перевірки значущості коефіцієнта детермінації висувається нульова гіпотеза H0проти альтернативи H1, котра заключаються в наступному:

H0: істотної різниці між вибірковим коефіцієнтом детермінації та коефіцієнтом детермінації генеральної сукупності не існує. Ця гіпотеза рівносильна гіпотезі H0: b=0, тобто змінні X не впливають суттєво на залежну змінну Y. Для оцінки значущості коефіцієнта детермінації використовується статистика:

що має F-розподіл Фішера з f1=1 та f2=n-2=60-2=58 ступенями вільності.

Значення статистики порівнюється з критичним значенням цієї статистики, знайденим за таблицею при заданому рівні значущості a=0,05 та відповідному числі ступенів вільності. Якщо F>F1,n-2,a , то обчислений коефіцієнт детермінації істотно відрізняється від нуля. Цей висновок забезпечується з ймовірністю 1-a.

Задамося рівнем значущості a=0,05. Кількість ступенів вільності наступна: f1=1, f2=58. По таблиці находимо критичне значення F1,58,0.05 = 4,03.

Так як F>F1,58,0.05 (23,7 > 4,03), то робимо висновок, що включені в регресію змінні достатньо пояснюють залежну змінну.

Рис. 6. Графік теоретичної лінійної регресії.

Індекс кореляції: R=

=0,54. Індекс кореляції вимірює щільність зв’язку і не показує її напрямок.

Лінійний коефіцієнт кореляції обчислюється за формулою[9]:

Лінійний коефіцієнт кореляції чим ближче до 1, тим тісніше зв’язок. Знак коефіцієнта вказує напрямок зв’язку: знак “+” відповідає прямій залежності, знак “-“ – оберненій залежності.

Висновки ІV.

Аналіз кореляційного зв ' язку між факторною(активами) та результативною(прибутком) показниками досліджувальної вибірки показників діяльності банків дає наступні результати :

1. Кореляційний зв ' язок для лінійної регресії має наступне рівняння та відносні характеристики :

Рівняння лінійної регресії y=1,2834+0,0629x.

Коефіцієнт детермінації дорівнює 0,29.

За критерієм Фішера зв’язок знайдено істотним.

Індекс кореляції дорівнює 0,54.

Лінійний коефіцієнт кореляції дорівнює 0,54 (сила зв’язка – середня).

Напрямок зв’язку – додатній.

2. Оскільки отриманий коефіцієнт детермінації дорівнює 0,29, то тільки 29% варіації прибутку банків пов’язано з варіацією активів банків, а 71% варіації припадає на решту факторів. Тобто зв’язок не є щільним, оскільки економічно прибуток банків залежить не тільки від їх активів, а ще від доходності цих активів , яка залежить від їх структури, та собівартості послуг для кожного банку. Отриманий результат є об'єктивним, оскільки прибуток банку дорівнює різниці між доходами від застосування активів та собівартістю (витратами) банків при здійсненні різних за масштабами та рівнем витрат доходних операцій.

V. Обчислення характеристик рядів динаміки

Завдання етапу 5.

На основі даних про активи банка за 9-12 місяці 1996-2000 рр. (табл. 2) визначити:

1. Ланцюгові та базисні (по відношенню до 1996 р.) показники динаміки активів за 9, 10, 11, 12 місяці окремо:

- абсолютний приріст;

- темп зростання і темп приросту;

- абсолютне значення 1% приросту.

Результати розрахунків подати у 4 таблицях. Перевірити взаємозв’язок ланцюго-вих аналітичних показників ряду динаміки і базисних.

2. Середні значення вище перелічених показників:

- середній рівень;

- середній абсолютний приріст;

- середній темп зростання;

- середній темп приросту.

3. Індекси сезонності, що дають характеристику внутрішньорічній динаміці і побудувати графік сезонної хвилі активів банку.

У процесі аналізу рядів динаміки обчислюють і використовують наступні аналітичні показники динаміки: абсолютний приріст, темп зростання, темп приросту і абсолютне значення одного проценту приросту. Обчислення цих показників грунтується на абсолютному або відносному зіставленні між собою рівнів ряду динаміки. Рівень, який зіставляється, називають звітним, а рівень, з яким зіставляють інші рівні – базисним. За базу зіставлення приймають початковий (перший) рівень ряду динаміки. Якщо кожний наступний рівень зіставляють з попереднім, то отримують ланцюгові показники динаміки, а якщо кожний наступний рівень зіставляють з рівнем, що взятий за базу зіставлення, то одержані показники називають базисними [1] – [9].

Абсолютний приріст обчислюється як різниця між звітним і базисним рівнями і показує, на скільки одиниць підвищився чи зменшився рівень порівняно з базисним за певний період часу. Він виражається в тих же одиницях виміру, що й рівні динаміки.

або
(7)

де yi – звітний рівень ряду динаміки; yi-1 – попередній рівень ряду динаміки;

y1 – початковий рівень ряду динаміки.

Темп зростання обчислюється як відношення зіставлюваного рівня з рівнем, прийнятого за базу зіставлення, і показує, у скільки разів (процентів) зрівнюваний рівень більший чи менший від базисного.

або
(8)